I место на Всероссийском конкурсе "Мир из моего окна"
Вложение | Размер |
---|---|
koninaez-sankt-peterburg-gbou_sosh_51-6_kl-matematiki_i_fizika.doc | 1.63 МБ |
konina_ez-prezentatsiya.ppt | 714 КБ |
Слайд 1
Тема: «Задачи на переливание» Секция: Математика и физика Автор: Конина Елизавета Захаровна, Г . Санкт-Петербург, ГБОУ СОШ №51, 6 класс Руководитель: Хрусталёва Василина Леонидовна, учитель математики Всероссийский конкурс учебно-исследовательских, проектных и творческих работ « Мир из моего окна » для учащихся 5-11 классов Санкт-Петербург, 2018Слайд 2
Введение Актуальность выбранной темы заключается в том, что одной из основных проблем разностороннего изучения математики в школе является нехватка времени на решение логических задач, в частности задач на переливание. Цель исследования – выявить алгоритм решения задач на переливание В ходе достижения цели будут решены следующие задачи: 1) Изучить литературу по данной теме. 2) Рассмотреть различные методы и способы решения задач на переливание. 3) Обобщить и систематизировать полученную информацию. Объект исследования: логические задачи Предмет исследования: задачи на переливание Методы исследования: - изучение литературных источников, - анализ готовых решений задач, - самостоятельное решение задач. .
Слайд 3
1 тип: «Водолей» - задачи, в которых необходимо получить некоторое количество жидкости с помощью нескольких пустых емкостей из бесконечного источника, из которого можно наливать жидкость, и в который ее можно выливать. 2 тип: «Переливайка» - задачи, в которых необходимо разделить жидкость в большей емкости с помощью нескольких меньших по объему емкостей, жидкость можно только переливать из одной емкости в другую; Методы начала решения задачи: 1 метод . Начать переливания с большего сосуда. 2 метод. Начать переливания с меньшего сосуда. Типы задач на переливание
Слайд 4
Способ использования таблицы Применяется для метода перебора Отличается наглядностью и удобством Задача : Для разведения картофельного пюре быстрого приготовления «Зеленый великан» требуется 1 л воды. Как, имея два сосуда емкостью 5 и 9 литров, налить 1 литр воды из водопроводного крана? 5л 5 0 5 1 9л 0 5 5 9
Слайд 5
Способ бильярдного шара Задача : С помощью сосудов объемом 7 и 11 литров и бочкой с водой отмерить 2 л воды.
Слайд 6
Способ использования координатной четверти Задача: Как при помощи двух вёдер объёмом 8 л и 5 л отмерить ровно 7 л речной воды?
Слайд 7
Условия разрешимости задач Если объемы двух меньших сосудов не имеют общего делителя (т. е. взаимно просты), а объем третьего сосуда больше или равен сумме объемов двух меньших, то с помощью этих трех сосудов можно отмерить любое целое число литров, начиная с 1 литра и кончая объемом среднего сосуда.
Слайд 8
Вывод АЛГОРИТМ РАБОТЫ НАД ЗАДАЧЕЙ НА ПЕРЕЛИВАНИЕ: 1. Внимательно прочитать текст задачи и определить разрешимость задачи. 2. Определить тип задачи. 3. Выбрать метод решения. 4. Выбрать способ решения. 5. Решить задачу.
Слайд 9
Спасибо за внимание!
Интервью с космонавтом Антоном Шкаплеровым
Как нарисовать ветку ели?
Учимся рисовать горный пейзаж акварелью
Украшаем стену пушистыми кисточками и помпончиками
Сверчок