Проект по теме: «Текстовые задачи». В результате проведен урок разноуровнего сотрудничества
Вложение | Размер |
---|---|
proekt_bez_literatury_2003.doc | 124.5 КБ |
МБОУ «Школа №9» Ново-Савиновского района г. Казани
Проект по теме: «Текстовые задачи»
Работу выполнили: ученицы 7 б класса
Сладинова Влада,
Петрова Анастасия.
Руководитель: учитель математики
Мифтахова Р.Х.
Казань-2012
Содержание
Поиск проблемы
В нашей школе на протяжении многих лет используется метод проектов. Каждый учащийся с 4 по 11 класс в течении учебного года должен выполнить творческий или исследоватльский проект по выбранному им предмету. В этом учебном году мы, ученицы 7 Б класса Сладинова Влада и Петрова Анастасия решили выполнить проект по предмету «Математика».
Математика включает в себя очень много разделов – это и начальная математика, и алгебра, и геометрия, и тригонометрия, и математический анализ и т.д. Любой из этих разделов содержит текстовые задачи, которые в обучении математике занимают важное место: это и цель, и средство обучения. Умение решать задачи -показатель обученности и развития учащихся. Научиться решать математические задачи очень важно, т. к., зная подходы к решению математических задач, учащиеся тем самым обучаются взаимодействию с любой задачей, которых достаточно много в других школьных предметах и в жизни вообще. Тем самым формируется жизненная позиция ученика как активной, самостоятельной личности.
Поэтому мы и решили, что предметом нашего исследования будут текстовые задачи.
Цели и задачи
Цели данного проекта:
-изучить классификации текстовых задач .
-обобщить и систематизировать умения по решению текстовых задач.
- опробировать профессию учителя, проведя самостоятельно уроки математики в 5-х классах;
- провести сравнительный анализ знаний и умений учащихся по решению текстовых задач.
Задачи данного проекта:
- подобрать и изучить литературу по данной теме
- составить конспект для проведения урока в 5 классе
- изучить основы программы Smart Notebook и подготовить презентацию к уроку
Историческая справка
В традиционном российском школьном обучении математике текстовые задачи всегда занимали особое место. С одной стороны, практика применения текстовых задач в процессе обучения во всех цивилизованных государствах идет от глиняных табличек Древнего Вавилона и других древних письменных источников, то есть имеет родственные корни. С другой - пристальное внимание обучающихся к текстовым задам, которое было характерно для России, - почти исключительно российский феномен. Известно, что исторически долгое время математические знания передавались из поколения в поколение в виде списка задач практического содержания вместе с их решениями. Первоначально обучение математике велось по образцам. Ученики, подражая учителю, решали задачи на определенное «правило». Подтверждением тому служит фрагмент из книги И. Бёшенштейна (1514 г.), в котором сначала дается «определение» тройного правила, формулируется правило, потом приводится задача и рецепт ее решения по правилу. «Тройным правилом называется regula magistralis, или regulo aureo ( т. е магистерское правило, или золотое правило), с помощью которого совершаются все торговые расчеты всех ремесленников и купцов; оно называется в гражданском обиходе de try или de tree, ибо содержит в себе три величины, при помощи которых можно вычислить всё. ...Заметь еще числа, стоящие сзади и спереди. Надо стоящее сзади число помножить на среднее и разделить на переднее». Далее то же правило дано в зарифмованном виде и приведен пример на его применение:
Я купил 100 фунтов шерсти за 7 гульденов.
Что стоят 29 фунтов? Фунты фунты гульдень
29 100 7
Помножь 29 на 7, затем раздели на 100, что получится и будет стоимостью 29 фунтов.
Это была обычная практика. По-другому в те времена учить не умели. Не случайно в «Арифметике» Л.Ф. Магницкого (1703 г.), вобравшей в себя переводы лучших иностранных авторов того времени, мы находим аналогично построенный учебный текст. Обучение «по правилам» было обычным и для России. В 1923 г. В. Беллюстин описывал старинную практику обучения решению текстовых задач. Одной из причин большого внимания к задачам заключается в том, что исторически долгое время целью обучения детей арифметике было освоением ими определенным кругом вычислительных умений, связанных с практическими расчетами. При этом основная линия арифметики - линия числа - еще не была разработана, а обучение вычислениям велось через задачи.
Вторая причина повышенного внимания к использованию текстовых задач в России заключается в том, что в России не только переняли и развили старинный способ передачи с помощью текстовых задач математических знаний и приемов рассуждений, но и научились формировать с помощью задач важные общеучебные умения, связанные с анализом текста, выделением условий задачи и вопроса, составлением плана решения, постановкой вопроса и поиском условий, из которых можно получить на него ответ. Проверкой полученного результата. Немаловажную роль играло также приучение школьников к переводу текста на язык арифметических действий, уравнений, неравенств, графических образов. Использование арифметических способов решения задач способствовало общему развитию учащихся, развитию не только логического, но и образного мышления, лучшему освоению естественного языка, а это повышало эффективность обучения математике и смежных дисциплин. Именно поэтому текстовые задачи играли столь важную роль в процессе обучения в России, и им отводилась так много времени при обучении математике в школе.
К середине XX века в СССР сложилась развитая типология задач, включавшая задачи на части, на нахождение двух чисел по их сумме и разности, по их отношению и сумме (разности), на дроби, на проценты, на совместную работу и т. д. Методика обучения решению задач была разработана достаточно хорошо, но ее реализация на практике не была свободна от недостатков. В процессе обучения решению текстовых задач школьников учили способам действий, которые не применяются или почти не применяются в жизни. Например, из программы 5-6 классов задач исключили задачи па совместную работу ввиду их «нежизненности»! К середине 50-х годов XX в. текстовые задачи были хорошо систематизированы, методика их применения в учебном процессе разработана, но при проведении реформы математического образования конца 60-х годов отношение к ним изменилось. Пересматривая роль и место арифметики в системе школьных предметов, стремясь повысить научность изложения математики за счет более раннего введения уравнений и функций, математики и методисты-математики посчитали, что на обучение арифметическим способам решения задач тратится слишком много времени. Академик В.И. Арнольд сравнивал традиционное отечественное преподавание математики с американским, писал: «Наше традиционное отечественное преподавание математики имело более высокий уровень и базировалось на культуре арифметических задач. Еще два десятка лет в семьях сохранялись старинные «купеческие» задачи. Теперь это утрачено. Алгебраизация последней реформы преподавания математики превращает школьников в автоматы. А именно арифметический подход демонстрирует содержательность математики, который мы учим.
Функции задач в математике
С начала и до конца обучения в школе математическая задача неизменно помогает ученику вырабатывать правильные математические понятия, глубже выяснить различные стороны взаимосвязей в окружающей его жизни, дает возможность применять изучаемые теоретические положения.
Функции задач в обучении математики таковы, каковы функции, цели обучения самой математики: воспитание, развитие, обучение молодого поколения. Отдельная задача может нести в себе различную информацию из различных областей знаний, расширять кругозор, воздействовать на познавательные возможности, может нести эстетическую нагрузку. А в целом воспитательное воздействие оказывает общий подход к решению задач: система задач, место, методы и формы ее решения, стиль общения учителя и учащихся и учащихся между собой при решении задач.
Решение задач позволяет учащимся воспитывать в себе настойчивость, трудолюбие, активность, самостоятельность, формирует познавательный интерес, помогает вырабатывать и отстаивать свою точку зрения, воспитывать достоинство личности.
Развивающие функции задач заключаются в том, что в деятельности решения задач вырабатываются умения применять теоретические знания на практике, выделять общие способы решения, переносить их на новые задачи, развиваются логическое и творческое мышление, внимание, память, воображение.
Обучающие функции задач можно классифицировать по их месту в обучении материала. Как известно при изучении нового материала имеют
При решении задач требуется, чтобы учащиеся не только знали правила, определения, формулировки, но и понимали их смысл, значение, умели применять их в конкретных ситуациях. В процессе обучения должны объединиться строго научное изложение учителя с высказываниями, рассуждениями, вопросами, усилиями в преодолении трудностей со стороны учащихся.
Понятие «текстовая задача». Структура задачи
С термином «задача» люди постоянно сталкиваются в повседневной жизни как на бытовом, гак и на профессиональном уровне. Каждому из нас приходится решать те или иные проблемы, кото-рые зачастую мы называем задачами. Это могут быть общегосударственные задачи, задачи опре-деленных коллективов и групп, а также задачи, которые стоят перед отдельными личностями. Проблема решения и чисто математических задач, и задач, возникающих перед человеком в процессе его производственной или бытовой деятельности, изучается издавна, однако до нас-тоящего времени нет общепринятой трактовки самого понятия «задача». В широком смысле сло-ва под задачей понимается некоторая ситуация, требующая исследования и решения человеком.
Отдельно стоят математические задачи, решение которых достигается специальными мат-ими средствами и методами. Среди них выделяют научные (н-р, теорема Ферма, проблема Гольбаха и др.), решение которых способствует развитию математики и ее приложений, и задачи учебные, которые служат для формирования необходимых математических знаний, умений и навыков у разных групп обучаемых и направлены на изменение качеств личности обучаемого. Учебные математические задачи различаются по характеру их объектов. В одних задачах все объекты математические (числа, геометрические фигуры, функции и т. д.), в других объектами являются реальные предметы (люди, животные, автотранспортные и механические средства, сплавы, жидкости и т. д.) или их свойства и характеристики (количество, возраст, скорость, производительность, длина и т. д.). Задачи, все объекты которых математические (доказательство теорем, вычислительные упражнения, установление признаков изучаемого математического понятия и т. д.), часто называют математическими задачами. Математические задачи, в которых есть хотя бы один объект, являющийся реальным предметом, принято называть текстовыми. В начальном обучении математике велика роль текстовых задач. Решая задачи, учащиеся приобретают новые математические знания, готовятся к практической деятельности. Задачи способствуют развитию их логического мышления. Большое значение имеет решение задач и в воспитании личности учащегося. Поэтому важно, чтобы учитель имел глубокое представление о текстовой задаче, о ее структуре, умел решать такие задачи различными способами.
Текстовой задачей будем называть описание некоторой ситуации на естественном и (или) математическом языке с требованием либо дать количественную характеристику какого-то компонента этой ситуации (определить числовое значение величины по известным числовым значениям других величин и зависимостях между ними), либо установить наличие или отсутствие некоторого отношения, либо найти последовательность требуемых действий.
Придерживаясь современной терминологии, говорят, что текстовая задача представляет собой словесную модель ситуации, явлений, события, процесса. Как в любой модели, в текстовой задаче описывается не всё событие или явление, а лишь его количественные и функциональные характеристики.
Основная особенность текстовых задач состоит в том, что в них не указывается прямо, какое именно действие должно быть выполнено для получения ответа на требование задачи.
В каждой задаче можно выделить:
а) числовые значения величин, которые называются данными, или известными (их должно быть не менее двух);
б) некоторую систему функциональных зависимостей в неявной форме, взаимно связывающих искомое с данными и данные между собой (словесный материал, указывающий на характер связей между данными и искомыми);
в) требование или вопрос, на который надо найти ответ.
Числовые значения величин и существующие между ними зависимости, т. е. количественные и качественные характеристики объектов задачи и отношений между ними, называют условием задачи. В задаче обычно не одно, а несколько условий, которые называют элементарными.
Требования могут быть сформулированы как в вопросительной, так и в повествовательной форме, их так же может быть несколько. Величину, значения которой требуется найти, называют искомой величиной, а числовые значения искомых величин - искомыми, или неизвестными.
Систему взаимосвязанных условий и требований называют высказывательной моделью задачи. Для того чтобы уяснить структуру задачи, надо выявить ее условия и требования, т. е. построить высказывательную модель задачи.
Ответ на требование задачи получается в результате ее решения. Решить задачу в широком смысле этого слова - это значит раскрыть связи между данными, заданными условием задачи, и искомыми величинами, определить последовательность применения общих положений математики (правил, законов, формул и т. д.), выполнить действия над данными задачи, используя общие положения и получить ответ на требование задачи или доказать невозможность его выполнения. Термин «решение задачи» широко применяется в математике. Этим термином обозначают связанные между собой, но все же неодинаковые понятия:
1. решением задачи называют результат, т. е. ответ на требование задачи;
2. решением задачи называют процесс нахождения этого результата, т. е. вся деятельность человека, решающего задачу, с момента начала чтения задачи до окончания решения;
3. решением задачи называют лишь те действия, которые производят над условиями и их следствиями на основе общих положений математики для получения ответа задач
В каждой текстовой задаче числовой материал должен соответствовать арифметической подготовке учащихся, числовые значения величин данных и искомых должны быть реальными (нельзя, н-р, указать в условии скорость пешехода 20км в час или расстояние между Москвой и Ленинградом равным какому - либо числу, кроме 651 км). Условие и вопрос задачи должны быть сформулированы ясно и точно, в соответствии с числовыми данными в условии.
Классификация задач
Классификация (классифицирование) (от лат. classis- разряд и facere-делать) — особый случай применения логической операции деления объема понятия, представляющий собой некоторую совокупность делений (деление некоторого класса на виды, деление этих видов и т.д.).
Анализ — это разбиение определенного целого на составные части. Синтез — наоборот, воссоединение определенных частей в единое целое.
Анализ и синтез связаны между собой. Подбирая к числовым данным вопрос (синтез), мы выбираем те данные, которые должны привести е решению задачи (анализ); поставив вопрос задачи (анализ), мы берем те данные, которые есть в условии задачи (синтез).
В зависимости от целей классификации выбирают основание для ее проведения и на его основе получают те или иные группы текстовых задач, которые объединяет либо метод решения, либо количество действий, которые необходимо выполнить для решения задачи, либо схожий сюжет. В зависимости от выбранного основания задачи можно классифицировать:
- по числу действий, которые необходимо выполнить для решения задачи;
- по соответствию числа данных и искомых;
- по фабуле задачи;
- по способам решения и др.
Положив в основание классификации число действий, которые необходимо выполнить для решения задачи, выделяют простые и составные задачи. Задачу, для решения которой нужно выполнить одно арифметическое действие, называют простой.
Пример: Саше 7 лет, он на 3 года старше Тани. Сколько лет Тане?
Задачу, для которой нужно выполнить два или большее число действий, называют составной.
Пример: Будем считать, что айсберг представляет собой прямоугольный параллелепипед. Известно, что его высота над водой равна 36 м, что составляет 1/6 части всей его высоты. Ширина айсберга в 125 раз больше его высоты, но в 3 раза меньше его длины. Определите объем айсберга.
Разделение задач на простые и составные не может быть проведено вполне строго. Например: задача на сложение нескольких слагаемых может быть решена одним действием сложения или несколькими действиями сложения, т.е. может быть причислена к простым или составным. Задачи на нахождение числа по его части могут решаться одним действием - делением па дробь, как задачи простые, или двумя действиями (деление на числитель дроби и умножением на ее знаменатель), т. е. могут быть отнесены к составным задачам.
Решая простую задачу, учащиеся учатся понимать зависимость между величинами и применять то или иное арифметическое действие.
Выбор действия - центральный и вместе с тем самый трудный вопрос при решении простых задач. При решении простой задачи учащиеся, усвоив содержание условия, должны разобраться, в какой зависимости находится искомое и данные числа, и отсюда сделать вывод действия для решения задачи.
Решение составной задачи сводится к разложению ее на простые задачи и к решению этих простых задач.
Поэтому к решению составных задач можно приступить только тогда, когда учащиеся усвоили решение простых задач и когда они имеют достаточные вычислительные навыки.
Приступая к решению составной задачи, учитель должен провести ряд устных упражнений: а) в составлении вопросов для определения искомых, б) в подборе данных для ответа на поставленный вопрос, в) в указании действий для получения ответа на вопрос задачи.
Чтобы учащиеся при решении составной задачи, в которой несколько данных и несколько искомых, не затруднялись в составлении простых задач, на которые разбивается составная задача, полезно проделать упражнения на составление сложной задачи из 2-х или 3-х простых. Для этого учащимся задаются одна за другой две простые задачи, причем ответ первой задачи служит одним из данных для второй задачи. Потом обе задачи читаются без промежуточного вопроса.
Решением сложной задачи состоит из следующих частей:
- усвоение учащимися содержания задачи;
- разбор задачи и составление плана (разложение сложной задачи на простые и составные и составление плана решения);
- решение (выбор действия, их выполнение, запись хода решения и вычислений);
проверка решения.
Число условий должно соответствовать числу данных и искомых. Тогда задача имеет одно решение и является задачей определенной.
Пример: Два переплетчика должны переплести 384 книги. Один из них переплетает по пять книг в день и уже переплел 160 книг. Сколько книг в день должен переплетать другой переплетчик, чтобы закончить работу в один день с первым?
Если число условий в задаче недостаточно, то задача может иметь несколько решений и называется задачей неопределенной.
Пример: На складе было 392 банки вишневого, малинового и клубничного варенья. Банок с вишневым вареньем было в 3 раза больше, чем малинового. Какова масса вишневое варенье, если в каждой банке его 800 г?
Задачи с альтернативным условием - это задачи, в ходе решения которых необходимо рассматривать несколько возможных вариантов условия, а ответ находится после того, как все эти возможности будут исследованы.
Пример: От одной пристани по реке одновременно отправляются два катера. Один движется со скоростью 17 км/ч, а второй - со скоростью 19 км/ч. На каком расстоянии друг от друга они будут находиться через 2 ч, если скорость течения реки равна 2 км/ч?
Переопределенные задачи - задачи, имеющие условие, которые не использующие при их решении выбранным способам. Такие условия называют лишними. Следует иметь в виду, что при решении задачи другим способом лишними могут оказаться уже другие условия. Если в переопределенной задаче лишние условия не противоречат остальным условиям, то она имеет решение.
Пример: В одной печи можно обжечь 39 ООО кирпичей за шесть дней, а в другой столько же кирпичей можно обжечь за пять дней. За сколько дней можно обжечь 143 ООО кирпичей, используя обе печи одновременно, если в первой печи за один день обжигают на 1300 кирпичей меньше, чем во второй.
В начальном курсе математики неопределенные задачи называют с недостающими данными, а переопределенные - задачами с избыточными данными.
Задачи можно разделить на стандартные и нестандартные. Нестандартная задача - это задача, решение которой не является для решающего известной целью известных действий. Для ее решения учащийся сам должен изобрести способ решения.
В каждой нестандартной задаче, как в клубке ниток, можно обнаружить ту ниточку, потянув за которую, можно распутать весь клубок. Такой ниточкой является основная идея решения, один из методов решения, который принято называть эвристиками. Эвристиками называются и отдельные методы решения задач, и учение об общих методах поиска решения задач.
Положив в основание классификации фабулу задачи, чаще всего выделяют такие группы задач: «на движение», «на работу», «на смеси и сплавы», «на смешение и концентрацию», «на проценты», «на части», «на время», «на покупку и продажу» и т. п. классифицировать задачи, исходя из фабулы условия, очень сложно, так как тематика условий задач бывает порой очень разнообразной.
Наиболее часто используемой эвристикой является метод восходящего анализа - решение задачи с конца, от требования - к условию.
Множество задач, в которых имеется одинаковая зависимость между величинами, входящими в эти задачи, при возможном различии их числовых данных и фабул образуют определенный вид задач. Задачи одного вида имеют одну и ту же алгебраическую модель. Положив в основание классификации способы решения задач, можно выделить такие группы задач:
1. задачи на тройное правило;
2. задачи на нахождение неизвестных по результатам действий;
3. задачи на пропорциональное деление;
4. задачи на исключение одного из неизвестных;
5. задачи на среднее арифметическое;
6. задачи на проценты и части;
7. задачи, решаемые с конца, или «обратным ходом».
При решении задач различными методами используют, как правило, «свою» классификацию задач. Так, при алгебраическом методе решения чаще всего в качестве основания классификации берут фабулу задачи, а при решении арифметическим методом задачи классифицируют по спосо-бам их решения. Однако следует отметить, что такое разбиение задач на группы, строго говоря, не является классификацией, так как в этих случаях, с одной стороны, появляются задачи, которые не могут быть отнесены ни к одной из образовавшихся групп, с другой стороны, существуют задачи, которые могут быть отнесены к нескольким указанным группам. Вместе с тем с точки зрения учебных целей эти и подобные им «классификации» задач удобны. Они дают возможность выделить наиболее типичные виды задач и усвоить стандартные способы их решения.
Разбор задачи можно сделать двумя приемами.
1. Первый прием называется синтетическим. Он состоит в следующем. Из условия задачи учащиеся выбирают одну пару числовых данных (иногда больше), к ним подбирается вопрос, т. е. составляется простая задача. Число, полученное при решении этой простой задачи, вместе с одним из данных в условии составной задачи или другая пара чисел из условия задачи берутся для составления второй простой задачи и т. д. в последней простой задаче ставится вопрос составной задачи. Ответ на него явится ответом задачи.
2. Второй прием разбора задач называется аналитическим. Разбор начинается с главного вопроса задачи, к нему подбираются данные из условия задачи, если в условии нет данных для решения этого вопроса, ставятся новые вопросы для их определения. Так поступают и дальше до тех пор, пока дойдут до вопроса, для которого есть данные в условии.
Методы решения задач
Существуют различные методы решения текстовых задач: арифметический, алгебраический, геометрический, логический, практический и т. д. В основе каждого метода лежат различные виды математических моделей .
Арифметический метод. Решить задачу арифметическим методом - значит найти ответ на требование задачи посредством выполнения арифметических действий над числами. Одну и ту де задачу во многих случаях можно решить различными арифметическими способами. Задача считается решенной различными способами, если ее решения отличаются связями между данными и искомыми, положенными в основу решений, или последовательностью этих связей.
Пример: Поют в хоре и занимаются танцами 82 студента, занимаются танцами и художественной гимнастикой 32 студента, а поют в хоре и занимаются художественной гимнастикой 78 студентов. Сколько студентов поют в хоре, занимаются танцами и художественной гимнастикой отдельно, если известно, что каждый студент занимается только чем-то одним?
Решение.
1-й способ.
1) 82 + 32 +78 = 192 (чел.) - удвоенное число студентов, поющих в хоре, занимающихся танцами и художественной гимнастикой;
2) 192: 2 = 96 (чел.) - поют в хоре, занимаются танцами и художественной гимнастикой;
3) 96 - 32 = 64 (чел.) - поют в хоре;
4) 96 - 78 = 18 (чел.) - занимаются танцами;
5) 96 - 82 = 14 (чел.) - занимаются художественной гимнастикой.
2-й способ.
1) 82 - 32 = 50 (чел.) - настолько больше студентов поют в хоре, чем занимаются художественной гимнастикой;
2) 50 + 78 = 128 (чел.) - удвоенное число студентов, поющих в хоре;
3) 128: 2 = 64 (чел.) - поют в хоре;
4) 78 -- 64 = 14 (чел.) -- занимаются художественной гимнастикой;
5) 82 - 64 = 18 (чел.) - занимаются танцами.
Ответ: 64 студента поют в хоре, 14 студентов занимаются художественной гимнастикой, 18 студентов занимаются танцами.
При алгебраическом методе решения задачи составляются уравнения или неравенства, при геометрическом - строятся диаграммы или графики. Решение задачи логическим методом начинается с составления алгоритма.
Следует иметь в виду, что практически каждая задача в рамках выбранного метода допускает решение с помощью различных моделей. Так, используя алгебраический метод, ответ на требование одной и той же задачи можно получить, составив и решив совершенно разные уравнения, используя логический метод - построив разные алгоритмы. Ясно, что в этих случаях мы так же имеем дело с различными методами решения конкретной задачи, которые называю способы решения. Иногда для краткости изложения, вместо того чтобы говорить, что задача решена определенным способом в рамках, например, арифметического метода, будем говорить, что «задача решена арифметическим способом» или «задача решена арифметическим методом», а то и просто - «задача решена арифметически».
Решить задачу алгебраическим методом - это значит найти ответ на требование задачи, составив и решив уравнение или системы уравнений (или неравенств). Одну и ту же задачу можно так же решить различными алгебраическими способами. Задача считается решенной различными способами, если для ее решения составлены различные уравнения или системы уравнений (неравенств), в основе составления которых лежат различные соотношения между данными и искомыми.
Пример: Рабочий может сделать определенное число деталей за три дня. Если он в день будет делать на 10 деталей больше, то справится с заданием за два дня. Какова первоначальная производительность рабочего и сколько деталей он должен сделать?
Решение.
1-й способ. Пусть х д./день - первоначальная производительность рабочего. Тогда (х + 10) д./день - новая производительность, Зх д. - число деталей, которое он должен сделать. По условию получаем уравнение Зх = 2(х + 10), решив которое найдем х = 20. первоначальная производительность рабочего 20 деталей в день, он должен сделать 60 деталей.
2-й способ.
Пусть х д. - число деталей, которое должен сделать рабочий. Тогда х/2 д./день - новая производительность, (х/2 - 10) д./день - первоначальная производительность рабочего по условию получаем уравнение х = 3(х/2 ~ 10), решив которое найдем х = 60. Рабочий должен сделать 60 деталей, его первоначальная производительность 20 деталей в день.
Ответ: 20 деталей в день; 60 деталей.
Геометрический метод. Решить задачу геометрическим методом - значит найти ответ на требование задачи, используя геометрические построения или свойства геометрических фигур.
Пример: Из двух городов А и В, расстояние между которыми 250 км, навстречу друг другу выехали два туриста. Скорость движения первого равна 20 км/ч, второго - ЗО км/ч. Через сколько часов туристы встретятся?
Решение.
1-й способ. Математическую модель задачи представим в виде диаграммы. Причем длину одного отрезка по вертикали за 10 км. Длину одного отрезка по горизонтали - за 1 ч. Отложим на вертикальной прямой отрезок АВ, равный 250 км. Он будет изображать расстояние между городами. Для удобства проведем еще одну ось времени через точку В. затем на вертикальных прямых станем откладывать отрезки пути, пройденные каждым туристом за 1 ч, 2 ч, 3 ч и т. д. Из чертежа видим, что через 5 ч они встретятся.
2-й способ. В прямоугольной системе координат по горизонтали отложим время движения (в часах), по вертикали - расстояние (в километрах).
Примем длину одного отрезка по вертикали за 10 км, а длину одного отрезка по горизонтали - за 1 ч. Построим графики, характеризующие движение каждого туриста. Движение первого туриста определяется функцией v = 20х, второго -у -- 250-ЗОх. Абсцисса точки их пересечения (точки О) указывает, через сколько часов туристы встретятся. Из чертежа видно, что ее значение равно 5. Ордината указывает, на каком расстоянии от пункта А произойдет встреча. Ее значение равно 100.
3-й способ. Пусть время движения туристов до встречи изображается отрезком ОТ, а скорость сближения - отрезком OS. Тогда площадь S прямоугольника OSOT соответствует расстоянию между городами А и В. Учитывая, что туристы сближаются каждый час на 20 + 30 = 50 (км), расстояние между городами равно 250 км, имеем уравнение 250 = 50 * ОТ, решив которое находим ОТ = 5 (ч). Итак, туристы встретятся через 5 ч.
Логический метод. Решить задачу логическим методом - это значит найти ответ на требование задачи, как правило, не выполняя вычислений, а только используя логические рассуждения. Примерами таких задач могут служить задачи «на переправы», классическим представителем которых являются задача о волке, козе и капусте, или задачи «на взвешивание». Практический метод. Решить задачу практическим методом - значит найти ответ на требования задачи, выполнив практические действия с предметами или их копиями (моделями, макетами).
Пример. Некто истратил 30 р. Своих денег, после чего удвоил оставшиеся деньги. Затем он истратил 60 р., после чего опять удвоил оставшиеся деньги. Когда он еще истратил 90 р., у него осталось 70р. Сколько денег было вначале?
Решение:
Чтобы определить, сколько денег было первоначально, возьмем оставшееся количество денег и выполним обратные операции в обратном порядке. Берем оставшиеся 70 р., добавляем к ним истраченные 90 р. (160 р.), затем делим эту сумму пополам и узнаем, сколько денег было до того, как второй раз удвоили оставшиеся деньги (80 р.). После этого добавляем 60 р. и находим, сколько денег было до того, как истратили 60 р. (140 р.). Делим эту сумму пополам и узнаем, сколько денег было до того, как первый раз удвоили оставшиеся деньги (70 р.), прибавляем истраченные в первый раз 30 р. и находим первоначальное количество денег (100 р.). Ответ: первоначально было 100 р.
Иногда в ходе решения задачи применяются несколько методов: алгебраический и арифметический; геометрический, алгебраический и арифметический; арифметический и практический и т. д. в этом случае считают, что задача решается комбинированным методом.
Пример. Четыре товарища купили телевизор. Первый внес половину суммы, вносимой остальными, второй - треть того, что внесли все его товарищи, третий - четверть того, что все его товарищи, четвертый - оставшиеся 650 р. Сколько было уплачено за телевизор?
Решение:
Пусть первый товарищ внес х р., второй -у р., третий -- z р. тогда, решая задачу чисто алгебраическим методом, по условию задачи получим достаточно громоздкую систему трех уравнений с тремя неизвестными.
Комбинированный метод позволяет получить ответ на требование задачи более простым путем.
Решение начнем алгебраическим методом.
Пусть первый товарищ вне х р., тогда все остальные внесли 2х р. Отсюда находим стоимость телевизора: х + 2х = Зх (р.). Значит, первый внес стоимости телевизора. Пусть второй внес у р., тогда все остальные внесли Зу р. Отсюда находим стоимость телевизора: у + Зу = 4у (р.). Значит, второй внес стоимости телевизора.
Пусть третий внес z р., тогда все остальные внесли 4z р. Отсюда находим стоимость телевизора: z + 4z = 5z (p.). Значит, третий внес стоимости телевизора.
Продолжим решение арифметическим методом.
Первый, второй и третий внесли 1/3 + 1/4 + 1/5 = 47/60 стоимости телевизора. Значит, четвертый внес остальные 1 - 47/60 = 13/60 стоимости. По условию это составляет 650 р. Следовательно, телевизор стоит 650 * 60/13 = 3000 р.
Ответ: 3 ООО р.
Методы решения могут быть разные, но способ решения, лежащий в их основе, может быть один.
Практическая часть
Наше взаимодействие и сотрудничество началось уже с обозначения темы и постановки задачи проекта, т.е. этапа поиска проблемы и «мозгового штурма».
Тему проекта мы выбрали самостоятельно, желая углубленно изучить решение различных типов текстовых задач.
Проектный метод ориентирован на нашу самостоятельную работу. Каждая из нас самостоятельно прорешала данный учителем объем текстовых задач. Важно отметить то, что при решении задач за 8-10 класс мы составляли только математическую модель к задаче, т.к. способы решения будут изучаться нами позже. При возникновении проблем мы совместно находили решение. Далее был разработан конспект урока математики в 5 Б и 5 В классах и презентация к уроку в программе Smart Notebook. Далее мы реализовали проект на практике- провели урок разноуровневого сотрудничества. Мы,ученицы 7 класса- Влада Олеговна и Анастасия Вячеславовна выступили в роли эрудированных, доброжелательных учителей математики. На уроке использовались элементы развивающего обучения (работа жестами), метод обучения - проблемно-поисковый. Кроме того, что на уроке решались текстовые задачи, был проведен письменный опрос учащихся.
После проведения последовали анализ и самоанализ урока. Позже нами был проведен сравнительный анализ письменного опроса учащихся 5-х классов.
Опрос заключался в следующем: учащимся были предоставлены на выбор 7 тем изученных в 5-ом классе, из которых они должны были выбрать ту тему, которой они владеют в большей степени, и поставить её на первое место. А оставшиеся темы проранжировать. Так же было предложено отметить : знает ли учащийся теоретический материал по темам или он уверен, что может применить ту или иную тему на практике.
После математической обработки были получены следующие данные.
Больше всех ребята проголосовали за тему№1 «Разряды натуральных чисел, округление» и это составило 31% от количества учащихся в 5 Б и 5 В классах, т.е. 14 человек. Но также эту же тему поставили на последнее место 7 учащихся, т.е. 15%.Вторую тему «Нахождение площади и периметра прямоугольника» двое учащихся (4%)поставили на последнее место и 18%, т. е. 8 человек на первое. Тему «Уравнения» никто из детей не поставил на первое место и семь учеников(15%) поставило на последнее седьмое место. Двое учащихся (4% ) выделили тему «Применения законов арифметических действий» на первое место и 12 (27%) на седьмое место. Тему «Обыкновенные дроби» 1 человек(2%) поставил на последнее место и 11 учащихся(24%) на первое.10 учащихся (23%) поставили на первое место тему «Десятичные дроби» и 2 (4%) на последнее. Последняя наиболее важная для нас предложенная тема: «Текстовые задачи». Эту тему на первое место никто из учащихся не поставил, 14 человек (33%) поставили ее на последнее место.
42 (94%) учащихся утверждают, что знают теоретический материал по темам: «Нахождение площади и периметра прямоугольника» и «Обыкновенные дроби». 1-2 ученика утверждают, что у них серьёзные трудности с данными темами. Чуть ниже результат по темам: «Разряды натуральных чисел, округление», «Уравнения» и «Десятичные дроби». Теоретический материал по данным темам знают 38-40 учащихся, что составляет 84-90%. Теоретические аспекты в теме «Текстовые задачи» знают 28 учащихся (63%).
А теперь обратим наше внимание на следующий аспект: уверены ли учащиеся в том, что они могут применить знания по предложенным темам на практике. 39 учащихся (86%) утверждают, что могут применить знания по теме «Нахождение площади и периметра прямоугольника» на практике; 38 учащихся (85%) уверены в своих знаниях по теме «Обыкновенные дроби»; 37 учащихся (81%) , по их мнению, смогут применить теоретические знания на практике по темам: «Разряды натуральных чисел, округление» и «Десятичные дроби»;35 учащихся (80%) по теме «Уравнения» Наименьшее количество учащихся- 25 человек (55%) уверены, что умеют решать текстовые задачи .
Данный результат очень важен для выявления трудностей учащихся в изученных темах математики, что позволяет провести наиболее успешную коррекционную работу
Заключение
Проанализировав научную, учебную, методическую литературу по теме «Текстовые задачи в курсе математики разных классов» можно сделать вывод, что умение решать текстовые задачи имеет важное место, это показатель обученное и развития учащихся. Умение решать задачи раз-ными методами способствует решению задач, как в других школьных предметах, так и в жизни.
Немаловажную роль в обучении играют разнообразные методы и приемы обучения. Такие как алгебраический, арифметический, геометрический, логический, комбинированный, аналитический, синтетический. Именно они вызывают активность мыслей у учащихся, и оптимально способствуют его умственному развитию, воспитывают настойчивость, активность, формируют жизненную позицию ученика как активной и самостоятельной личности.
Решая задачи, у учащихся вырабатывается умение применять теорию на практике, сопоставлять известное с неизвестным и отвечать на вопрос задачи. Применять для решения задачи известные им уже факты, с помощью мотивации и пропедевтики со стороны учителя.
Решением задач достигаются следующие цели:
1)Решая задачу, школьник учится понимать зависимость между величинами, устанавливать связь между ними, выбирать соответствующие действия.
2)Использование в условиях задач жизненного материала способствует установлению связи математики с современностью, уточняет знания учащихся о наших достижениях в области строительства, развивает в них гордость за наши успехи, любовь к Родине.
3)На задачах выясняются многие математические понятия, например: два вида деления, увеличение и уменьшение в разностном и кратном отношении, различные случаи употребления действий.
4)Применение того или иного действия при решении задач закрепляет математические навыки.
5)Решение задач из окружающей жизни воспитывает человека, умеющего применять к жизни основы знаний, полученных в школе.
6)Решение задач способствует возбуждению интереса к занятиям по математике.
7)Развивая логическое мышление, решение задач готовит учеников к успешному усвоению алгебры и геометрии.
Таким образом, гипотеза исследования: решение текстовых задач является одной из важных проблем обучения математики, так как дают возможность провести выполнение умственных операций: анализа, синтеза, сравнения, обобщения, а так же способствует углублению знаний по многим темам изучаемых в математике разных классов, подтвердилась.
Литература
1.Алимов Ш.А., Колягин. Ю.М., Сидоров Ю.В. и др. Алгебра 7, 8, 9, 10-11 кл. – М.: Просвещение, 2011.
2.Издательский дом «Первое сентября» главный редактор-А.Соловейчик, Май 2009.
3.Программы общеобразовательных учреждений «Алгебра 7-9 классы»Составитель: Т.А. Бурмистрова. Москва: Просвещение, 2011.
4.Справочник школьника: 5-11 классы. – М.:АСТ – ПРЕСС, 2007.
5. Интернет – ресурсы http://www.yaklass.ru/
Финист - Ясный сокол
Что общего у травы и собаки?
Мастер-класс "Корзиночка"
Любимое яичко
Приключения Тома Сойера и Гекельберри Финна