Литература и математика - что может объединять эти далекие друг от друга области знаний?
Гипотеза: перефразируя знаменитые слова Софьи Васильевны Ковалевской, что каждый математик должен быть немного поэтом в душе, в своей работе мы попытаемся показать, что в некоторых литературных произведениях присутствует математическая логика, строгие научные рассуждения, но встречаются и математически неправильно решенные жизненные задачи.
Актуальность выбранной темы - увидеть за словом число, за сюжетом - формулу и доказать, что художественная литература существует не только для литераторов, как и математика не только для математиков.
Цель исследования - поиск математических задач в художественной литературе. По возможности их решение и объяснение.
Объект исследования: произведения русской классической художественной литературы.
Задачи исследования:
1) вызвать интерес к изучению предмета «математика» у учащихся, имеющих гуманитарный склад ума;
2) изучение научно-популярной, занимательной русской литературы;
3) подбор художественной литературы для исследования;
4) решение задач и оценка полученных результатов;
Вложение | Размер |
---|---|
Научно-исследовательский проект | 131.88 КБ |
МАОУ «СОШ № 42»
Научно-исследовательский проект
Выполнили:
ученицы 7«Г» класса Мауликаева Вероника
Слащева Александра
Руководитель:
учитель математики Минаева Л.А.
Пермь 2017
Оглавление
Введение………………………………………………………………….3-6
Исследовательская часть………………………………………………..7-15
1.Задача о догадливой вороне…………………………………………7-9
1.1теоретический способ решения задачи…………………………….7-8
1.2экспериментальная часть решения задачи…………………………8
2.Сказка о царе Салтане и тридцати трех богатырях………………...10-12
3.Ученый кот Пушкина…………………………………………………..13
4.Задача о «гордом холме»……………………………………………...13-15
Заключение………………………………………………………………..16-18
Приложение ……………………………………………………..............18
Список литературы ……………………………………………………..19
Введение
Гуманитарные науки... только тогда будут удовлетворять человеческую мысль, когда в движении своём они встретятся с точными науками и пойдут с ними рядом...
А. П. Чехов
Сочетать несочетаемое - привычная работа нашего воображения, когда мы ищем объяснение непонятному.
Человек воспринимает, познаёт и воссоздаёт мир двумя противоположными способами — рассудочным и образным, рациональным и эмоциональным, «мыслью и сердцем»[3]. Это приводит к условному делению большинства людей на «физиков» и «лириков». Таким образом, сама природа, давая человеку призвание, заботится о том, чтобы развитие культуры было обеспечено приходом как ученых, так и художников. Науку и искусство можно назвать двумя крыльями культуры, они — дополняющие друг друга противоположности, две грани одного и того же процесса - творчества.
Часто можно услышать такую фразу: «Ой, да что эта математика! Сухая наука. Выучил формулу - и решай задачи! Не то, что литература. Вот где красота и гармония». Да, так говорят многие. Но они забывают о том, что именно математика подарила нам такие слова как гармония, симметрия, пропорция.
Природа совершенна, и у нее есть свои законы, выраженные с помощью математики и проявляющиеся во всех искусствах.
Школьник, которому приходится видеть математику только в учебнике, неожиданно встречаясь с математическими вкраплениями в произведениях великих русских художников слова - Пушкина, Лермонтова, Чехова, воспримет их литературные творения с особым интересом. И, скорее всего, покоренный этой красотой, увидит математику так, как видим её мы – авторы этой работы.
Математические задачи ставят перед читателями авторы некоторых романов, повестей, рассказов, как правило, между - делом зачастую сами не обращая на это внимания. А сами авторы часто рассматривают математическую задачу как деталь, фон, эпизод своего повествования.
Представляем вашему вниманию наш первый литературный опыт, связанный с математикой, и, перефразируя слова известного сказочного персонажа, можно сказать: «Мы не поэты, мы только учимся, но математика позволяет делать настоящие чудеса».
Литература с математикой с давнишних пор
Ведут между собой древнейший спор.
«Я - Математика! Я - Королева средь наук.
И без меня все, как без рук.
Не смогут вычесть и сложить,
И даже точно день прожить.
Моих фигур прелестный ряд
Везде, куда не кинешь взгляд.
Я Человечеству служу,
Я ум в порядок привожу».
Литература ей в ответ:
«Да, ты прекрасна спору нет.
Но всех важнее я на свете.
Нужна и взрослым я и детям,
И интересней нет меня наук.
Я для людей -духовный друг!
Я тоже Человечеству служу
И в людях чувства добрые бужу».
Так множество веков тянулись разногласья
О том, что между разумом и чувством нет согласья.
Друзья! Решили мы окончить этот спор:
И о пересеченье этих плоскостей ведем наш разговор.
А на прямой, образовавшейся от их пересеченья
Остались чувства умные и добрый ум.
И если добрый ум в науке будет балом править.
То чувства умные несовершенный мир исправят.
Как верно заметил А. Блок, сама истинная поэзия, сами «настоящие стихи - это математика слова»[1].
Литература и математика - что может объединять эти далекие друг от друга области знаний? Литературу, с ее интересом к духовному миру человека, поисками нравственных ценностей, смысла жизни, и математику, предпочитающую строгий научный подход и абстрактную форму интуиции. Литература ищет гармонию между человеческой душой и природой. Математика же создала адекватные методы математического описания знаков природы. Это замечательное свойство делает математику универсальным инструментом для всех естественных наук.
Гипотеза: перефразируя знаменитые слова Софьи Васильевны Ковалевской, что каждый математик должен быть немного поэтом в душе, в своей работе мы попытаемся показать, что в некоторых литературных произведениях присутствует математическая логика, строгие научные рассуждения, но встречаются и математически неправильно решенные жизненные задачи.
Актуальность выбранной темы - увидеть за словом число, за сюжетом - формулу и доказать, что художественная литература существует не только для литераторов, как и математика не только для математиков.
Цель исследования - поиск математических задач в художественной литературе. По возможности их решение и объяснение.
Объект исследования: произведения русской классической художественной литературы.
Задачи исследования:
Методы исследования: анализ научно-популярной и художественной литературы, анализ и решение, сравнение результатов с реальной действительностью.
Жизнь человека и общества постоянно требует сложных решений, выходящих за рамки любой профессии, любого специализированного образа мысли.
Наша исследовательская работа лишний раз подтверждает знаменитую истину, что математика не признаёт упрощенного подхода, основанного на фантазии и неправдоподобности, и является «царицей всех наук»[2].
В своём исследовании мы хотим подтвердить наше предположение о том, что многие поэты и писатели всё-таки являются математиками в душе и многим математикам свойственны поэтические таланты.
Исследовательская часть
Математика известна с древних времён. Если вспомнить такие великие государства прошлого как Древний Рим, Древняя Греция, Османская империя в Турции, то можно заметить, что все архитектурные и художественные шедевры создавались с использованием математики.
Знания математики требовались не только при строительстве, но и при создании литературно – художественных произведений. Недаром А. С. Пушкин говорил: «Вдохновение нужно в геометрии не меньше, чем в поэзии».
Грамотное использование математических фактов делает художественное произведение достоверным и реальным.
1. Задача о догадливой вороне
Недавно я прочитала забавный рассказ Л.Н.Толстого о догадливой вороне, основанный на старинной легенде. Эта старинная легенда повествует о вороне, страдавшей от жажды и нашедшей кувшин с водой.
Воды в кувшине было мало, клювом ее не достать, но ворона будто бы сообразила, как пособить горю: она стала кидать в кувшин камешки. В результате этой уловки уровень воды поднялся до краев кувшина, и ворона могла напиться.[13]
1.1 Теоретический способ решения задачи
Не обсуждая того, могла ли ворона проявить подобную сообразительность, я заинтересовалась этим случаем с геометрической стороны. Легенда дает повод рассмотреть следующую задачу:
Сколько воды должно было быть в кувшине первоначально, чтобы ворона могла напиться?
Я решила рассмотреть три случая:
Удалось ли бы вороне напиться, если вода в кувшине налита была меньше половины, до половины, больше половины?
Решение
Разбор задачи убеждает, что способ, примененный вороной, приводит к цели не при всяком первоначальном уровне воды в кувшине.
Ради упрощения примем, что кувшин имеет форму прямоугольной призмы, а камешки представляют собой шарики одинаковой величины. Легко сообразить, что вода поднимается над уровнем камешков лишь в том случае, если первоначальный запас воды имеет больший объем, чем все промежутки между камешками: тогда вода заполнит промежутки и выступит поверх камешков. Можно вычислить, какой объем занимают эти промежутки. Проще всего выполнить расчет при таком расположении каменных шариков, когда центр каждого лежит на одной отвесной прямой с центрами верхнего и нижнего шариков. Пусть диаметр шарика d и, следовательно, объем его
V1= ,
а объем описанного около него кубика
V2= .
Разность их объемов: V1-V2 =
есть объем незаполненной части кубика, а отношение
= 0,48 ()
означает, что незаполненная часть каждого кубика составляет 0,48 его объема. Такую же долю составляет и сумма всех объемов пустот от объема кувшина. Таким образом, объемы пустот и шариков равны
( 0,48=0,48) и вода не выступает на поверхности.
Мало что изменяется, если кувшин имеет не форму параллелепипеда, а камешки не шарообразны.
Во всех случаях можно утверждать, что если первоначально вода в кувшине налита была, ниже половины, вороне не удалось бы набрасыванием камешков поднять воду до краев.
1.2 Экспериментальная часть
Я провела эксперимент: взял мерный цилиндр и камешки гравия.
Наливала в цилиндр воду, рассматривая все три случая.
Результаты измерений были занесены в таблицу.
Первоначальный уровень воды | Объем воды до наполнения кувшина камнями, см3 | Уровень воды после наполнения кувшина камнями, |
ниже половины | 40 | Ниже камней |
половина | 50 | Выше на 2см |
выше половины | 80 | Выше на 5см |
1.3 Выводы по эксперименту:
если вода стояла, ниже половины высоты кувшина или вода занимала половину высоты кувшина, - вороне не удалось бы напиться;
если вода стояла выше половины высоты кувшина, - ворона бы напилась.
Результаты эксперимента подтверждают теоретическое решение задачи.
Будь ворона посильнее, - настолько, чтобы утрясти камешки в кувшине и добиться их плотного сложения, - ей удалось бы поднять воду более чем в два раза выше первоначального уровня. Но ей это не под силу сделать.
Я проверила, если брать очень мелкие камни, то вода поднимается выше. В реальных условиях рыхлое расположение камешков допустимо. К тому же кувшины обычно раздуты в средней части; это должно так же уменьшить высоту подъема воды, и подкрепляет правильность вывода(от формы сосуда и высоты воды в кувшине зависит решение проблемы: смогла ли ворона напиться воды?).
На уроке литературы в 5 классе учитель задал нам необычный вопрос: докажите, что сказка о царе Салтане именно сказка, а не быль. Сама постановка задачи вызвала недоумение: никогда прежде на уроках литературы мы ничего не доказывали! Да, мы рассуждали, спорили, учились аргументировано отстаивать свое мнение, но доказывать... на уроках литературы... Нет, такого не было. Это же не математика!
А дальше было вот что. Допустим, сказал наш учитель, сказка о царе Салтане — это быль, и всякое высказывание в ней истинно. Рассмотрим, как корабельщики рассказывают царю Салтану про чудо - явления тридцати трех богатырей:
Каждый день идет там диво:
Море вздуется бурливо,
Закипит, подымет вой,
Хлынет на берег пустой,
Расплеснется в скором беге —
И останутся на бреге
Тридцать три богатыря,
В чешуе златой горя,
Все красавцы молодые,
Великаны удалые,
Все равны, как на подбор;
Старый дядька Черномор
С ними из моря выходит
И попарно их выводит,
Чтобы остров тот хранить
И дозором обходить.[11]
... Итак, на берег из моря выходят 33 молодых богатыря и старый дядька Черномор, который выводит их парами, то есть по двое. Но 33 на 2 не делится, следовательно, поэтическое описание оказывается ложным, невозможным с точки зрения арифметики. Отсюда следует, что произведение Александра Сергеевича Пушкина действительно является сказкой, что и требовалось доказать.
Неужели поэт ошибся? Получается так, что наш великий поэт допустил элементарную математическую ошибку и не заметил, что 33 нельзя раз- делить нацело на 2? Нет, конечно.
Летом 1831 года, женившись, Пушкин проводил лето в Царском Селе и посетил Лицей, в котором учился. Известно, что лицеистов в классе рассаживали в соответствии с успехами в учении: чем ниже успеваемость воспитанника, тем дальше от кафедры он должен был садиться. И вот тогда летом 31-го года один самый смелый воспитанник спросил поэта - за что учитель математики отправил его за самую последнюю парту? - «Я не мог 33 разделить на 2!» - улыбнулся поэт.
В это время, летом 31-го, Пушкин завершал работу над «Сказкой о Царе Салтане». В рукописях поэта сохранились две записи этого сюжета, относящиеся к 1822 и 1824 годам. Вернувшись из Лицея к своему письменному столу, поэт вновь вспомнил пору своего ученичества, вспомнил и эпизод с делением, всего-то на всего - одно число разделить на другое. Но это деление у юного Александра никак не получалось. Это был именно тот день, когда учитель сказал ему: «Ступайте, Пушкин, на место! И продолжайте лучше сочинять свои стихи!..»
Историю о том неудавшемся делении и зашифровал поэт в рассказе о тридцати трех богатырях, выходящих из моря парами!
А.С. Пушкин писал: «Вдохновение нужно в геометрии не меньше, чем в поэзии»[10].
Читая произведения Пушкина, мы находим применение геометрии. Кому не известны следующие пушкинские строки из поэмы «Руслан и Людмила».
У лукоморья дуб зеленый
Златая цепь на дубе том.
И днем и ночью кот ученый
Все ходит по цепи кругом. [10]
А задумываемся ли мы над тем, какую линию описывает кот при своем движении? На первый взгляд может показаться, при таком движении описывается окружность. Но это неверно. Ведь цепь все время наматывается или сматывается с дуба так, что она натянута и образует касательные к окружности ствола. Ее концы при этом описывают сложную геометрическую кривую. Так что кот не зря назван Пушкиным «Ученым»: он знаком с этой геометрической кривой.
Существует старинная легенда восточных народов, рассказанная А.С.Пушкиным в Скупом рыцаре».
Читал я где-то,
Что царь однажды воинам своим
Велел снести земли по горсти в кучу,
И гордый холм возвысился – и царь
Мог с вышины с весельем озирать
И дол, покрытый белыми шатрами,
И море, где бежали корабли. [12]
Таким образом, можно сформулировать математическую модель данной задачи:
Какую высоту будет иметь куча песка, насыпанная горстями людей из древнего войска?
На какое расстояние увеличится дальность горизонта, если находится на вершине этого кургана?
По экспериментальным данным среднее значение одной горсти песка у одного взрослого мужчины может быть равным 156 см3.
№ | Объем горсти песка, см3 | Среднее значение, см3 |
1 | 190 | 156 |
2 | 148 | |
3 | 152 | |
4 | 134 |
Старинные армии были не так многочисленны, как современные. Рассмотрим большое войско, состоящее из 100 000 человек. Поэтому по моим расчетам объем такого холма мог быть:
3 = 15,6м3.
Высота холма при заданных условиях будет составлять высоту конуса. Угол откоса ≤ 450, иначе земля начнет осыпаться. Возьмем угол откоса максимальный в 450.
Если даже каждый воин принес не горсть земли, а пригоршню, то и тогда по результатам эксперимента её средний объем равен 284 см3.
№ | Объем пригоршни песка, см3 | Среднее значение, см3 |
1 | 290 | 284 |
2 | 210 | |
3 | 325 | |
4 | 310 |
А объем холма: 28400000см3=28,4м3.
Высота такого холма немного отличается от предыдущего и будет:
3,005м.
Надо обладать очень богатым воображением, чтобы земляную кучу высотой в 3 метра назвать «гордым холмом». Сделав расчет для меньшего угла, мы получили бы еще более скромный результат.
У великого полководца Атиллы было самое многочисленное войско, какое знал древний мир. Историки оценивают это войско в 700 000человек. Если бы эти воины участвовали в насыпании холма, то куча была бы выше. Объем такой кучи был бы в 7 раз больше рассчитанной, а высота холма превышала вычисленную высоту в . Она равнялась бы 3 1,9 = 5,7 м. Наверное, курган таких размеров не удовлетворил бы честолюбие Атиллы.
А.С. Пушкин делает ошибку, говоря о далёком горизонте, открывающемся с вершины «гордого холма».
Полчища Атиллы не смогли воздвигнуть холм выше 5,7м. теперь можно завершить расчеты, определив, насколько холм этот расширял горизонт наблюдателя, поместившегося на его вершине.
Глаз такого зрителя возвышался бы над почвой на 5,7+1,5=7,2, т.е. на 7 метров, и следовательно, дальность горизонта была ровно бы 8,8 км. Это всего на 4 км больше того, что можно видеть, стоя на ровной земле, а наблюдать море можно, если находишься на его берегу.
Это легенда, в которой при кажущемся правдоподобии нет и зерна правды. Доказано геометрически, что если бы какой-нибудь древний деспот вздумал осуществить такую затею, он был бы обескуражен мизерностью результата. Перед ним высилась бы настолько жалкая куча земли, что никакая фантазия не смогла бы раздуть ее в легендарный «гордый холм».
5. Герои Жуля Верна
Известный роман Жюля Верна «Таинственный остров» содержит не только интересный, захватывающий сюжет, но и достаточно много математических рассуждений.
В этом романе картинно описан один из способов измерения высоких предметов.
– Сегодня нам надо измерить высоту площадки Дальнего Вида, – сказал инженер.
– Вам понадобится для этого инструмент? – спросил Герберт.
– Нет, не понадобится. Мы будем действовать несколько иначе, обратившись к не менее простому и точному способу.
Взяв прямой шест, футов 12 длиной, инженер измерил его возможно точнее, сравнивая со своим ростом, который был ему хорошо известен. Герберт же нёс за ним отвес: просто камень, привязанный к концу верёвки.
Не доходя футов 500 до гранитной стены, поднимавшейся отвесно, инженер воткнул шест фута на два в песок и, прочно укрепив его, поставил вертикально с помощью отвеса.
Затем он отошёл от шеста на такое расстояние, чтобы лёжа на песке, можно было на одной прямой линии видеть и конец шеста, и край гребня. Эту точку он тщательно пометил колышком.
– Тебе знакомы начатки геометрии? – спросил он Герберта, поднимаясь с земли.
– Да.
– Помнишь свойства подобных треугольников?
– Их сходные стороны пропорциональны.
– …Если мы измерим два расстояния: расстояние от колышка до основания шеста и расстояние от колышка до основания стены, то, зная высоту шеста, сможем вычислить четвёртый, неизвестный член пропорции, т. е. высоту стены.
Оба горизонтальных расстояния были измерены: меньшее равнялось 15 футам, большее – 500 футам.
По окончании измерений инженер составил следующую запись:
15 : 500 = 10 : х;
500 х 10 = 5000;
5000 : 15 = 333,3.
Значит, высота гранитной стены равнялась 333 футам.
Задача.
Вообразите, что вы обошли земной шар по экватору. Насколько при этом верхушка вашей головы прошла более длинный путь, чем кончик вашей ноги?
Решение:
Ноги прошли путь 2R, где R – радиус земного шара. Верхушка же головы прошла при этом 2(R + 1,7), где 1,7 м – рост человека. Разность путей равна
Итак, голова прошла путь на 10,7 м больше, чем ноги.
Любопытно, что в окончательный ответ не входит величина радиуса земного шара. Поэтому результат получится одинаковый и на Земле, и на Юпитере, и на самой маленькой планете.
Заключение
Приступая к исследованию, мы ставили перед собой задачу вызвать интерес к изучению предмета «математика» у учащихся, имеющих гуманитарный склад ума.
Математика неисчерпаема и многогранна, одного покоряет ее логическая стройность, другого – абстрактный метод, третий ценит в ней величайшую полезность. Единство особенности математики – это так же ее особенность, которая составляет ее красоту.
В моей исследовательской работе раскрыты факты счастливого соединения художественного и математического таланта, наблюдаемого у некоторых людей. Читая художественные произведения, я встречала в них элементы математики.
Математика и литература, не так далеки друг от друга. Искусство и наука требуют фантазии, творческой смелости, зоркости и наблюдения различных явлений жизни. Литература учит нас понимать окружающий мир, математика – точно мыслить, соизмерять, оценивать этот мир.
Обзор литературы, поиск и решение математических задач в литературных произведениях и сравнение полученных решений с авторскими, показал, что знания по математике нужны не только математикам, но и писателям и поэтам.
И чтобы в этом убедиться, для этого:
- была изучена научная и научно-популярная литература, исследующая связь литературы и математики, представляющая решение задач в литературных произведениях;
- были подобраны для исследования отрывки из художественных произведений, в которых рассматривались или были представлены различные математические задачи или ситуации, связанные с этой наукой;
- выполнено решение подобранных задач;
- проведено сопоставление полученных в данном исследовании решений задач с решениями, представленными авторами литературных произведений;
О заинтересованности нашим проектом говорит тот факт, что учащиеся средних классов сами стали находить и приносить нам математические задачи из произведений детской художественной литературы: «Алиса в стране чудес»Льюиса Кэрролла, «Старик Хоттабыч» Л.И. Лагина и др. А ученики старших классов проявили интерес потому, что некоторые задачи из художественных произведений в несколько изменённом виде встречаются в ЕГЭ по математике.
Если 2 из 100 человек, с которыми мы общались, перед которыми мы выступали с нашим исследованием, увидят в художественных произведениях математическую ситуацию, задачу там, где раньше никогда её не видели, не обращали на неё внимание, и хотя бы 1 человек из этих 2% попытается разобрать ситуацию, приступить к решению этой математической задачи, мы считаем, что наша работа, наше исследование, принесли огромную пользу, ибо они увидели за словом число, за сюжетом – формулу, то есть цель нашей работы – достигнута.
Результаты работы:
1.Было установлено, что связь между математикой и литературой действительно существует;
2.Найдены материалы, подтверждающие это;
3. Математика обладает большим эстетическим потенциалом;
4.Был опровергнут стереотип о сухости математиков;
5. Проведен опрос учащихся 7, 10 и 11 классов;
7.Доказано присутствие математики в литературе;
В конечном результате исследовательской деятельности становится очевидно, что многие авторы вполне осознанно включают в тексты своих произведений формулировки математических задач (в этом случае задания решаемы), но есть такие, которые не особо уделяют внимание деталям (условия, корректный вопрос), а добавляют задачи как бы «между прочим», для полноты красок изображаемой картины (здесь с решением задач могут возникнуть проблемы).
Вывод
Подводя итог, можно с уверенностью сказать, что математика и литература – это вечные науки. С древнейших времен известно, что математика учит правильно и последовательно мыслить, логически рассуждать. Кто занимается математикой, тот развивает свой ум и внимание, воспитывает волю и настойчивость. А эти качества нужны всем без исключения: и врачу, и артисту, и художнику, и писателю. Не менее важна и литература, позволяющая человеку выражать свои мысли, чувства, эмоции. Только в тесной взаимосвязи этих наук человек будет чувствовать себя спокойно, уверенно, комфортно в этом огромном мире загадок.
Данное исследование нашло свое практическое применение. На основе этой работы была составлена компьютерная презентация и были проведены на основе нее факультативные занятия в 6 и 11 классах. Возможно, этот метод мог бы помочь школьникам в изучении материала, ведь он делает математику более занимательной, а чтение – внимательным. Кроме того, это прекрасная возможность упражняться одновременно в двух дисциплинах.
В ходе выполнения данной работы возникла также мысль о практическом приложении результатов исследования, которая поможет учащимся с особым интересом получать знания одновременно в двух науках – математике и литературе.
Приложение
Читая художественные произведения, мы нередко можем встретить в них придуманные автором математические задачи. Проблема заключается в том, что не все читатели при прочтении обращают внимание на затейливые авторские головоломки, да и сам автор не всегда осознанно, зачастую между делом, ставит их в своих романах, повестях, рассказах.
Чтобы более подробно прояснить ситуацию, в целях исследования решено было провести анкетирование.
Анкета
1. «Что вам легче дается математика или литература?»
Математика- учеников (%)
Литература- учеников (%)
Проявили затруднение при выборе предмета- учеников (%)
2. Существует ли связь между математикой и литературой ?
Существует- учеников (%)
Не существует- учеников (%)
Затруднялись учеников (%)
3. Встречаете ли вы в прочитанном задачи, головоломки, шарады математического характера.
Да - учеников (%)
Нет - учеников (%)
Затруднялись - учеников (%)
4. Если находите в рассказах, повестях, романах задачи, пытается ли вы решить их.
Да - учеников (%)
Нет - учеников (%)
Затруднялись - учеников (%)
В анкетировании принимало участие 67 человек, каждый из которых регулярно читает художественные произведения. По результатам проведенного исследования 12% опрошенных встречают в прочитанном задачи, головоломки, шарады математического характера. Также было установлено, что только 5% из тех, кто находит в рассказах, повестях, романах задачи, пытается решить их. Но в целом, опрошенные считают использование математических задач при написании произведений уместным приемом.
Диаграмма опроса
Список литературы
Анатолий Кузнецов. Как мы с Сашкой закалялись
Сочини стихи, Машина
Нечаянная победа. Айзек Азимов
Новогодние гирлянды
Упрямый зяблик