Исследовательский проект по математике "Путешествие к истокам геометрии"
Вложение | Размер |
---|---|
Исследовательский проект по математике "Путешествие к истокам геометрии" | 870.23 КБ |
Муниципальное Казённое Образовательное Учреждение
«Средняя Общеобразовательная Школа №1» им. Шелаева А.С.
Оглавление:
1. Из истории Древнего Египта и Вавилона.
2. Фалес Милетский.
3. Александрийская школа.
4. Евклид и его «Начала».
5. Архимед и главное его открытие.
6. Н.И.Лобачевский – первооткрыватель неевклидовой геометрии.
7. Где встречаются геометрические фигуры в нашей жизни.
IV. Заключение
Геометрия является очень сложным звеном в математике. Практика показывает, что в среднем звене дети испытывают большие трудности при изучении самостоятельного предмета “Геометрия”. Это связано в первую очередь с тем, что у обучающихся слабо развито пространственное воображение, нет практических навыков в построении геометрических фигур. Мне не раз приходилось слышать созвучные со словом «геометрия» слова: география, геология, геодезия, геоботаника и др.
Попробуем разгадать его смысл.
Из уроков географии я знаю, «гео» в переводе с греческого означает «земля». Нетрудно догадаться, «метрио» - «измерять». Выходит, геометрия означает «измерение земли» или «землемерие».
Такое название объясняется тем, что зарождение геометрии было связано с различными измерительными работами. В результате этой деятельности появились, постепенно накапливались и передавались от поколения к поколению различные правила, связанные с геометрическими измерениями и построениями, но они не были еще систематизированы.
Где и как начиналась геометрия и когда заслужила право называться наукой? Кто был первый, предложивший аксиоматическое её построение? Истинное начало этой истории теряется во мгле времён.
Принято думать, что это сделали греки. Быть может, прославленные египетские жрецы? Но они не позаботились о том, чтобы оставить для потомков труды, подтверждающие их приоритет.
Как бы то ни было, в седьмом веке до нашей эры геометрия приходит в Грецию. И здесь греки оттачивают, а может, создают, одно из самых красивых и долговечных творений человеческой мысли — науку геометрию.
Для первобытных людей важную роль играла форма окружавших их предметов. По форме и цвету они отличали съедобные грибы от несъедобных, пригодные для построек породы деревьев от тех, которые годятся лишь на дрова, вкусные орехи от горьких и т.д. Особенно вкусными казались им орехи кокосовой пальмы, которые имеют форму шара. А добывая каменную соль, люди наталкивались на кристаллы, имевшие форму куба. Так, овладевая окружающим их миром, люди знакомились с простейшими геометрическими формами.
Уже 200 тысяч лет тому назад были изготовлены орудия сравнительно правильной геометрической формы, а потом люди научились шлифовать их. Специальных названий для геометрических фигур, конечно, не было. Говорили: «такой же, как кокосовый орех» или «такой же, как соль» и т.д.
А когда люди стали строить дома из дерева, пришлось глубже разобраться в том, какую форму следует придавать стенам и крыше, какой формы должны быть бревна. Сами того не зная, люди все время занимались геометрией: женщины, изготавливая одежду, охотники, изготавливая наконечники для копий или бумеранги сложной формы, рыболовы, делая такие крючки из кости, чтобы рыба с них не срывалась.
Когда стали строить здания из камня, пришлось перетаскивать тяжелые каменные глыбы. Для этого применялись катки. И заметили, что перекатка проще, если взять кусок дерева с почти одинаковой толщиной в начале и в конце. Так люди познакомились с одним из важнейших тел – цилиндром. Скалками цилиндрической формы пользовались и женщины, раскатывая белье после стирки.
Перевозить грузы на катках было довольно тяжело, потому что сами древесные стволы весили много. Чтобы облегчить работу, стали вырезать из стволов тонкие круглые пластинки и с их помощью перетаскивать грузы. Так появилось первое колесо. Но не только в процессе работы знакомились люди с геометрическим фигурами.
Издавна они любили украшать себя, свою одежду, свое жилище (бусинки, браслеты, кольца, украшения из драгоценных камней и металлов, роспись дворцов).
1.Из истории Древнего Египта и Вавилона.
В древнейшие времена египтяне, приступая к постройке пирамиды, дворца или обыкновенного дома, сначала отмечали направление сторон горизонта (это очень важно, так как освещенность в строении зависит от положения его окон и дверей по отношению к солнцу). Действовали они следующим образом. Для того чтобы найти направление север - юг, втыкали вертикально палку и следили за ее тенью. Она становилась наименьшей, когда ее конец указывал на север.
В строительстве очень важно было знать площадь участка, отведенного под застройку. Для этого древние египтяне использовали особый треугольник, у которого были фиксированные длины сторон.
Занимались измерениями особые специалисты, их называли "натягивателями веревки" - гарпетонаптами. Они брали длинную веревку, делили ее узелками (расстояние между ними равно одному локтю фараона) на двенадцать частей, а концы ее связывали. В направлении север-юг строители устанавливали два колышка на расстоянии четырех частей, отмеченных на веревке. Затем при помощи третьего колышка натягивали ее так, чтобы образовался треугольник, у которого одна сторона имела три части, другая четыре, а третья - пять. Получался прямоугольный треугольник, площадь которого принимали за эталон, если пользовались одной и той же веревкой. При этом сторона, имеющая три части, указывала восточно-западное направление. Вряд ли египетские строители осознавали, что их метод нуждался в каком-либо обосновании.
Но мы теперь знаем, что он основан на доказанном гораздо позднее утверждении, являющимся обратным теореме Пифагора. А последняя была "открыта" через много веков после того, как ею научился пользоваться обыкновенный древнеегипетский мастеровой. Египетская геометрия была практической; в ней не столько рассуждали, сколько интуитивно устанавливали правила действий, удобные для приложений, но никогда их не исследовали. Египтяне правильно вычисляли площади некоторых прямолинейных фигур, таких, как прямоугольник, квадрат, треугольник и трапеция: основание треугольника делилось пополам и умножалось на высоту.
Погребальная камера отца фараона Рамзеса II (около 1300 год до н.э.), оставшаяся недостроенной, дает представление о том, как египтяне украшали внутренние стены. Они переносили рисунок при помощи деления стены на квадратики. Таким методом сейчас широко пользуются художники для переноса изображения. Данный факт подтверждает то, что им были знакомы элементарные свойства подобныx фигур и зачатки теории пропорций.
Как видим, в древнем Египте перед писцами в основном стояли практические проблемы. Многие решения находились путем проб, эмпирически. На наряду с этим в начале II тысячелетия до нашей эры шла интенсивная работа творческой мысли, задачи мысленно обобщались и принимали более абстрактный характер. В начале XX века в результате археологических раскопок, проводившихся между реками Тигром и Ефратом, там, где когда-то процветало государство Вавилон, было обнаружено несколько сотен глиняных табличек. Около трехсот из них относятся к математике и датируются либо временем первой вавилонской династии Хаммурапи (с 1894 по 1595 гг. до н.э.), либо периодом эпохи Селевкидов (VI-III в.в. до н.э.). На табличках встречаются последовательности чисел, геометрические соотношения и задачи. Математические познания вавилонян применялись при денежном и товарном обмене, в задачах на простые и сложные проценты, при вычислении налогов и распределении урожая. Большинство задач можно отнести к разряду хозяйственных. Хотя характер вавилонской математики был в основном алгебраическим, происхождение задач, записанных писцами, было часто геометрическим, например, вычисление площадей, объемов некоторых простых фигур и тел. Уже 4 - 5 тысяч лет назад вавилоняне умели определять площадь прямоугольника и трапеции в квадратных единицах. Квадрат служил эталоном при измерении площадей благодаря своему совершенному виду. Но геометрическая форма задачи обычно являлась только средством для того, чтобы поставить алгебраический вопрос.
К задачам, которые вавилоняне решали алгебраическим и арифметическим методом, относятся и многие задания на определение длин, площадей при делении земельных участков, объемов земляных выемок, хозяйственных построек. Все решения, встречающиеся в клинописных текстах, ограничиваются простым перечислением этапов вычисления в виде догматических правил: "делай то - то, делай так - то". В дошедших до нас вавилонских табличках имеются задачи абстрактного характера и внешне кажущиеся не связанными с практическими нуждами. Но это не так: они возникли в результате теоретической обработки условий, первоначально порожденных потребностями практики при межевании земель, возведении стен и насыпей, при строительстве каналов, плотин, оборонительных сооружений и пр. Сохранилось немало планов земельных угодий, разделенных на участки прямоугольной, трапецеидальной или треугольной форм. Но соответствующие геометрические фигуры воспринимались ими как абстрактные, так прямоугольник они называли "то, что имеет длину и ширину", трапецию - "лбом быка", сегмент - "полем полумесяца", параллельные прямые - "двойными прямыми". У вавилонян не было таких геометрических понятий как точка, прямая, линия, поверхность, плоскость, параллельность. Измерение производилось при помощи веревки. Геометрические познания вавилонян превышали египетские.
Расцвет государства Вавилон коснулся различных областей знаний. Наблюдения за небесными светилами, вызванные необходимостью путешествий по водным путям и караванными тропами, оформились у вавилонских жрецов в науку астрологию. Изучение небесных явлений позволило им создать астрономию. Они знали скорость движения Луны, продолжительность лунного месяца, периодичность солнечных и лунных затмений. Знания вавилонян оказали заметное влияние на последующее развитие математики.
2.Фалес Милетский.
ФАЛЕС МИЛЕТСКИЙ 625-547 до н.э
Фалес (640/624 — 548/545 до н. э.) — древнегреческий философ и математик из Милета (Малая Азия). Представитель ионической натурфилософии и основатель милетской (ионийской) школы, с которой начинается история европейской науки. Именем Фалеса названа геометрическая теорема.
Имя Фалеса уже в V в. до н. э. стало нарицательным для мудреца. «Отцом философии» Фалеса называют уже в его время.
Достоверно известно только то, что Фалес был знатного рода, и получил на родине хорошее образование. Собственно милетское происхождение Фалеса ставится под сомнение; сообщают, что его род имел финикийские корни, и что в Милете он был пришельцем (на это указывает напр. Геродот).
Сообщается, что Фалес был торговцем и много путешествовал. Некоторое время жил в Египте, в Фивах и Мемфисе, где учился у жрецов, изучал причины наводнений, продемонстрировал способ измерения высоты пирамид. Считается, что именно он «привез» геометрию из Египта и познакомил с ней греков. Его деятельность привлекла последователей и учеников, которые образовали милетскую (ионийскую) школу, и из которых сегодня наиболее известны Анаксимандр и Анаксимен.
Предание рисует Фалеса не только собственно философом и учёным, но также «тонким дипломатом и мудрым политиком»; Фалес пытался сплотить города Ионии в оборонительный союз против Персии. Сообщается, что Фалес был близким другом милетского тирана Фрасибула; был связан с храмом Аполлона Дидимского, покровителя морской колонизации.
Некоторые источники утверждают, что Фалес жил в одиночестве и сторонился государственных дел; другие — что был женат, имел сына Кибиста; третьи — что оставаясь холостяком, усыновил сына сестры.
Относительно времени жизни Фалеса существует несколько версий. Наиболее последовательно традиция утверждает, что он родился в период с 39-й по 35-ю олимпиаду, а умер в 58-ю в возрасте 78 или 76 лет, то есть прибл. с 624 по 548 до н. э.. Некоторые источники сообщают, что Фалес был известен уже в 7-ю олимпиаду (752—749 до н. э.); но в целом время жизни Фалеса сводится на период с 640—624 по 548—545 до н. э., т.о. умереть Фалес мог в возрасте от 76 до 95 лет. Сообщается, что умер Фалес, наблюдая за гимнастическими состязаниями, от жары и, скорее всего, давки. Считается, что есть одна точная дата, связанная с его жизнью, — 585 до н. э., когда в Милете было солнечное затмение, которое он предсказал (по современным вычислениям, затмение произошло 28 мая 585 до н. э., во время войны между Лидией и Мидией).
Сведения о конкретных событиях жизни Фалеса скудны и противоречивы, имеют анекдотичный характер.
Как сообщают, будучи военным инженером на службе у царя Лидии Креза (или во время одного из путешествий), Фалес, чтобы облегчить переправу войска, пустил реку Галис по новому руслу. Неподалеку от г. Мител он спроектировал плотину и водоотводный канал и сам руководил их постройкой. Это сооружение значительно понизило уровень воды в Галисе и сделало возможной переправу войск.
В Милете, в одной из гаваней, Фалес установил дальномер — прибор, который позволял определять расстояние от берега до корабля, находящегося далеко в море. Свои деловые качества Фалес доказал захватив монополию на торговлю оливковым маслом; однако в активности Фалеса этот факт имеет эпизодический и, скорее всего, «дидактический» характер.
Упомянутое выше предсказание солнечного затмения 585 до н. э. — по-видимому единственный бесспорный факт из научной деятельности Фалеса Милетского; во всяком случае сообщается, что как раз после этого события Фалес стал известен и знаменит.
О политической активности Фалеса известно ещё меньше, чем об общественной и научной. Сообщают, что Фалес был сторонником некоего объединения ионийских полисов (наподобие конфедерации, с центром на о. Хиос), как противодействия угрозе со стороны Лидии, а позже и Персии. Причем Фалес, в оценке внешних опасностей, видимо считал угрозу со стороны Персии большим злом, чем от Лидии; упомянутый эпизод со строительством плотины имел место во время войны Креза (царя Лидии) с персами. В то же время Фалес выступил против заключения союза милетян с Крезом, чем спас город после победы Кира (царя Персии).
Фалес был купцом. Он хорошо зарабатывал, умело торгуя оливковым маслом. Много путешествовал: посетил Египет, Среднюю Азию, Халдею. Всюду изучал опыт, накопленный жрецами, ремесленниками и мореходами; познакомился с египетской и вавилонской школами математики и астрономии.
Возвратившись на родину, Фалес отошёл от торговли и посвятил свою жизнь
занятиям наукой, окружив себя учениками,- так образовалась милетская ионийская школа, из которой вышли многие знаменитые греческие учёные.
Это Анаксимандр, впервые высказавший о бесконечности вселенной, составивший первую географическую карту с применением прямоугольной трапеции; это Анаксимен, выдвинувший гипотезу, объясняющую затмения Солнца и Луны.
Научная деятельность Фалеса была тесно связана с практикой. Во время одного из путешествий он служил у лидийского царя Креза специалистом по военной технике. Морякам он советовал ориентироваться, как это делали финикияне, по Малой Медведице, заметив, что Полярная звезда находится под одним и тем же углом над горизонтом.
Руководя сооружением храмов, он доказал, что угол, вписанный в полуокружность, всегда будет прямым и что иначе быть не может.
Древнегреческий историк Геродот (V век до н. э.) рассказывал, что во время битвы на Галисе «день превратился в ночь» и что Фалес предсказал лидийцам солнечное затмение именно в том год. (Вспомните, как историки установили время битвы русского князя Игоря с половцами.) Это событие помогло историкам установить довольно точно время жизни Фалеса. Как теперь известно, затмение произошло в 585 году до н. э. Значит, Фалес родился около середины VI века до нашего летосчисления.
Ему же приписывают такие астрономические открытия, как объяснение причины солнечных затмений, установление времени солнцестояний и равноденствий, определение длины года в 365 дней и ряд других.
Фалес первым отказался считать небесные светила божественным созданием и утверждал, что они естественные тела природы, что всё в мире состоит из первичного вещества, которым он считал воду. «Вода- изначальный элемент, её осадок- земля, её пары- воздух и огонь»,- считал Фалес. Таким образом, он явился родоначальником греческой стихийной материалистической философии.
Фалес известен и как геометр. Условно ему приписывают открытие и доказательство ряда теорем: о делении круга диаметром пополам, о равенстве углов при основании равнобедренного треугольника, о равенстве вертикальных углов, один из признаков равенства прямоугольников и другие.
Геометрия
Считается, что Фалес первым доказал несколько геометрических теорем, а именно:
√ вертикальные углы равны;
√ треугольники с равной одной стороной и равными углами, прилегающими к ней, равны;
√ углы при основании равнобедренного треугольника равны;
√диаметр делит круг пополам;
√ угол, вписанный в полуокружность, всегда будет прямым.
Фалес первый вписал прямоугольный треугольник в круг. Нашёл способ определять расстояние от берега до видимого корабля, для чего использовал свойство подобия треугольников. В Египте «поразил» жрецов и фараона Амасиса тем, что сумел точно установить высоту пирамиды Хеопса. Он дождался момента, когда длина тени палки становится равной её высоте, и тогда измерил длину тени пирамиды.
Истории, связанные со славой и именем Фалеса
√ Однажды груженый солью мул, переходя вброд речку, внезапно поскользнулся. Содержимое тюков растворилось, а животное, поднявшись налегке, сообразило в чём дело, и с тех пор при переправе мул намеренно окунал мешки в воду, наклоняясь в обе стороны. Прослышав об этом, Фалес велел наполнить мешки вместо соли шерстью и губками. Груженый ими мул попытался проделать старый трюк, но добился обратного результата: поклажа стала значительно тяжелее. Говорят, что впредь он переходил реку так осторожно, что ни разу не замочил груз даже нечаянно.
√ Про Фалеса передавали такую легенду (её с большой охотой повторил Аристотель). Когда Фалеса, по причине его бедности, укоряли в бесполезности философии, он, сделав по наблюдению звезд вывод о грядущем урожае маслин, ещё зимой нанял все маслодавильни в Милете и на Хиосе. Нанял он их за бесценок (потому что никто не давал больше), а когда пришла пора и спрос на них внезапно возрос, стал отдавать их внаем по своему усмотрению. Собрав таким образом много денег, он показал, что философы при желании легко могут разбогатеть, но это не то, о чём они заботятся. Аристотель подчеркивает: урожай Фалес предсказал «по наблюдению звезд», то есть благодаря знаниям.
√ В шестой год войны между лидийцами и мидянами случилось сражение, во время которого «день внезапно стал ночью». Это было то самое солнечное затмение 585 до н. э., «заблаговременно» предсказанное Фалесом и произошедшее именно в предсказанный срок. Лидийцы и мидяне были настолько поражены и испуганы, что прекратили битву и поспешили заключить мир.
√ Фалес открыл любопытный способ определения расстояния от берега до видимого корабля. Одни историки утверждают, что для этого им был использован признак подобия прямоугольных треугольников.
Проиллюстрируем этот метод на чертеже (рис.5.).
Пусть А - точка берега, B- корабль. На берегу восстанавливается перпендикуляр AC произвольной длины: AC┴ AB. Из точки С проводится перпендикуляр CD в противоположную от моря сторону. Из точки C проводится перпендикуляр CD в противоположную от моря сторону. Из точки D смотрят на корабль и фиксируют на AC точку E- точку пересечения AC с DB. Тогда длина отрезка АВ во столько раз больше (или меньше) длины отрезка СD, во сколько раз AE больше (или меньше) CE.
Другие историки говорят, что Фалес применил признак конгруэнтности прямоугольных треугольников, то есть точку D он выбирал так, чтобы наблюдатель D,корабль В и середина отрезка АС, то есть точка Е, лежали на одной прямой. Тогда AB=CD.
√ Столь же остроумно предложил Фалес измерять высоту предметов. Став недалеко от предмета, надо дождаться, пока тень от человека не сделается равной его росту. Измерив тогда длину тени предмета, можно заключить, что она равна высоте предмета. Говорят, таким способом Фалес измерял высоту египетских пирамид.
3.Александрийская школа.
Афинская школа числила в своих рядах таких великих людей, как Платон и Аристотель. После смерти Аристотеля центр научной мысли переместился в Александрию (Египет), где в начале 3 в. до н.э. был основан знаменитый Александрийский Мусейон – один из главных научных центров античного мира.
К числу представителей Александрийской школы в начале второго периода ее существования надо отнести Герона Александрийского, жившего, вероятно, в I в. до н. э. Герон был выдающимся греческим инженером и ученым. Он известен многими своими изобретениями, работами геодезического характера, а также математическими работами, относящимися главным образом к вопросам геометрической метрики. Из его работ, имеющих значение для математики, можно отметить «Метрику» и «О диоптре». В «Метрике» приводятся правила и указания для точного и приближенного вычисления площадей и объемов различных фигур и тел; среди них имеется и формула для определения площади треугольника по трем его сторонам, вошедшая в математику под именем формулы Герона. Кроме того, в этой работе указываются примеры решения квадратных уравнений и приближенного вычисления квадратных и кубических корней. Характерной особенностью «Метрики», выделяющей ее из ряда работ других греческих геометров, предшествовавших Герону, служит то обстоятельство, что в ней обычно правила даются без доказательств, а лишь выясняются на отдельных примерах. Это значительно снижает достоинства работы и, несомненно, является признаком недостаточной научной подготовки её автора. Но в области практических, приложений математики Герон превосходит многих своих предшественников. Лучшей иллюстрацией этого является его работа «О диоптре». В этом труде излагаются методы различных работ геодезического характера, причем землемерная съемка производится с помощью изобретенного Героном прибора диоптры. Этот прибор является прообразом современного теодолита. Главной его частью служила линейка с укрепленными на концах ёе визирами. Эта линейка вращалась по кругу, который мог занимать и горизонтальное, и вертикальное положение, что давало возможность намечать направления как в горизонтальной, так и в вертикальной плоскости. Для правильности установки прибора к нему присоединялись отвес и уровень. Пользуясь этим прибором и вводя фактически в употребление прямоугольные координаты, Герон мог решать на местности различные задачи: измерить расстояние между двумя точками, когда одна из них или обе недоступны наблюдателю; провести прямую, перпендикулярную к недоступной прямой линии; найти разность уровней между двумя пунктами; измерить площадь простейшей фигуры, не вступая на измеряемую площадку.
Сочинения Герона давали его современникам богатый материал, практическое использование которого вполне удовлетворяло вопросам строительства и земледелия, а потому эти сочинения пользовались большим успехом в продолжение многих столетий.
В конце I в. н. э. надо отметить появление трудов неопифагорейца Никомаха. Его работа «Введение в арифметику» является первым трудом по арифметике, изложенным независимо от геометрии, и потому она оказывала свое влияние на изучение арифметики не менее тысячи лет. Между тем эта работа не содержит в себе ничего особенно оригинального. Основной ее идеей является классификация чисел, причем она проводится на основах, всецело опирающихся на числовую мистику. В числовую классификацию Никомаха входят также и многоугольные числа по образцу пифагорейских. Наиболее интересным в «Арифметике» Никомаха является раздел суммирования числовых рядов. Здесь мы встречаем, например, указание на то, что кубические числа представляют собой суммы последовательных нечетных чисел. Так, 13 = 1; 23 = 3 + 5; 33 = 7 + 9 + 11; 43 = 13 + 15 + 17 + 19 и т. д.
Современником Никомаха надо считать астронома и геометра Менелая Александрийского, который написал трактат о сферических треугольниках, явившихся в свое время как бы фундаментом сферической геометрии. В этом же труде Менелая находится его знаменитая теорема, согласно которой «если какая-нибудь прямая линия пересекает три стороны треугольника или их продолжения, то произведение трех отрезков, не имеющих общих точек, равно произведению трех других отрезков».
Ко II в. относится деятельность Клавдия Птолемея. Оп работал главным образом в области астрономии, причем его астрономические наблюдения относятся ко времени между 125 и 151 г. (Как астроном Птолемей разработал геоцентрическую систему мира, согласно которой Земля неподвижно покоится в центре мира, а все небесные светила движутся вокруг нее. Эта система была опровергнута Н. Коперником в его гелиоцентрической системе мира, полагающей, что центром Вселенной является Солнце, вокруг которого обращаются Земля и другие планеты, причем все планеты вращаются вокруг своих осей.) В своих работах он невольно сталкивался с понятиями тригонометрического характера, а потому ему удалось внести значительный вклад и в развитие тригонометрии. В своих астрономических работах Птолемей уже не разделял часы на дневные и ночные, как это делали египтяне, а считал их равными по своей продолжительности. Окружность он разделял на 360 градусов и каждый градус делил еще пополам. Диаметр же окружности он делил на 120 градусов, полагая, таким образом, что длина окружности в 3 раза больше ее диаметра; при этом каждый градус диаметра подразделял на 60 равных частей, а каждую из этих частей вновь разделял на 60 частей. В более позднее время эти подразделения градуса получили у римлян наименования partes minutae primae и partes minutae sekundae, что в переводе означает «части меньшие первые» и «части меньшие вторые». От этих латинских слов нами и заимствованы названия для единиц измерения углов и времени — минута и секунда.
Главная работа Птолемея называлась «Великое математическое построение астрономии в XIII книгах» или сокращенно «Мэгистэ» (в пер. с греч. «величайшая»). В историю она вошла под названием «Альмагест», которое дали ей впоследствии арабы.
В «Альмагесте» Птолемей вычисляет величины хорд всех дуг от 0° до 180о, причем значения хорд даны для дуг через каждую 1/2°. Для выполнения этой работы Птолемей вводит свою теорему, которая в истории математики носит название теоремы Птолемея и формулируется так: произведение длин диагоналей вписанного в круг четырехугольника равно сумме произведений длин его противоположных сторон. Из этой теоремы Птолемей подучил следствия, позволяющие по данному диаметру окружности и по двум хордам, стягивающим дуги a и b, вычислить хорды, стягивающие дуги a + b и a - b. Пользуясь полученными соотношениями, а также используя уменье вычислять стороны вписанных в круг правильных фигур (треугольника, квадрата, пятиугольника, шестиугольника и десятиугольника), Птолемей и составил свою таблицу хорд, предшественницу современных таблиц синусов.
В истории математики Птолемей известен также тем, что он первый усомнился в очевидности постулата Евклида о параллельных прямых и делал попытки доказать его справедливость, тем самым положив начало длинному ряду подобных же попыток позднейших геометров, пока Лобачевский не показал безуспешность таких доказательств, разъяснив их невозможность.
Последним крупным геометром Александрийских школ следует признать геометра III в. Паппа. Ему принадлежало, как полагают значительное число сочинении, из которых сохранилось лишь «Математическое собрание», да и то не в полном виде (из восьми книг этого сборника полностью утрачена первая и не хватает части второй).
«Математическое собрание» Паппа имеет для истории математики большое значение: оно содержит обзор трудов предшественников Паппа, развивает некоторые их идеи, комментирует эти труды. Благодаря этому для нас сохранились сведения о многих математических работах древних, которые не дошли в подлинниках до нашего времени. Кроме того, в работе Паппа имеются и некоторые новые и оригинальные открытия. Так как Папп не всегда называет авторов приводимых им теорем, то нам трудно судить, какие теоремы принадлежат ему самому и какие - другим авторам. Но по отношению к некоторым из них считают несомненным, что они принадлежат Паппу. Многие из этих теорем имеют значительный теоретический и практический интерес. Теорема Паппа об инволюции точек читается так: «Если на двух прямых, лежащих в одной плоскости, взять по три точки: на первой прямой точки 1, 5 и 3, а на второй—2, 4 и 6, то точки пересечения пар прямых 1—2 и 4—5, 2—3 и 5—6, 3—4 и 6— 1 лежат на одной прямой.
Большое применение имеет теорема, которая впоследствии была переоткрыта Паулем Гюльденом (1577—1643), а потому и носит имя последнего: объем тела, образованного вращением плоской фигуры вокруг какой-нибудь лежащей в ее плоскости прямой, равен произведению площади фигуры на длину окружности, описанной при вращении ее центром тяжести. Интересна предложенная и изученная Паппом спираль, которая описывается точкой, движущейся вдоль дуги четверти окружности, когда эта дуга вращается около диаметра. Из других теорем, доказанных Паппом, приведем ещё такие: «Центр тяжести треугольника принадлежит также другому треугольнику, вершины которого лежат на сторонах данного и разделяют эти стороны в одном и том же отношении»; «Прямая, соединяющая противоположные концы параллельных диаметров двух кругов, имеющих внешнее касание, проходит через точку касания». Паппу приписывается также решение задачи о проведении через той точки, лежащие на одной прямой, трех прямых, образующих треугольник, вписанный в данный круг.
К числу александрийских ученых относятся алгебраист Диофант, живший, вероятно, в III в. Жил он 84 года. Последнее сведение почерпнуто из эпиграммы некоего Метродора, помещенной в так называемой «Греческой антологии». Содержание эпиграммы таково:
Прах Диофанта гробница покоит дивись ей - и камень.
Мудрым искусством его скажет усопшего век.
Волей богов шестую часть жизни он прожил ребенком,
И половину шестой встретил с пушком на щеках.
Только минула седьмая, подружкою он обручился.
С ней пять лет проведя, сына дождался мудрец.
Только полжизни отцовской возлюбленный сын его прожил.
Отнят он был у отца ранней могилой своей.
Дважды два года родитель оплакивал тяжкое горе.
Тут и увидел предел жизни печальной своей.
Диофант написал сочинение, названное им «Арифметика». Это сочинение резко отличается по своему характеру от известных нам других математических работ древних греков. Главное отличие заключается в том, что изложение его идет чисто аналитическим путем, хотя и вводится иногда геометрическая терминология. «Арифметика» Диофанта включает в себя главным образом вопросы алгебры и теории чисел. Надо отметить, что Диофант не излагает обобщенных методов для решения тех или иных вопросов, а к решению каждого отдельного вопроса подходит с особым методом. Это выявляет огромные математические способности Диофанта, но сильно снижает научную ценность его труда- Из 13 книг «Арифметики» до нашего времени сохранилось только 6. В них Диофант рассматривает решение уравнений 1-й и 2-й степени, причем основное внимание обращает на неопределенные уравнения.
Алгебра Диофанта должна быть отнесена к так называемому периоду «синкопированной алгебры», то есть к тому времени, когда в алгебр переходили от чисто риторического изложения (то есть словесного) к использованию более кратких записей при помощи сокращенных слов и некоторых символов. Так, для изображения неизвестного числа Диофант вводит обозначение S', а когда это неизвестное употребляется во множественном числе, то упомянутое обозначение удваивается. Для каждой степени неизвестного вводились соответствующие синкопированные обозначения. Для обозначения вычитания употребляется знак , а для равенства — буква I. Уменьшаемое писалось раньше вычитаемого, а числовые коэффициенты — после неизвестных. Непосредственное следование одной записи за другой означало действие сложения.
Отрицательные числа Диофанту известны не были, но когда приходилось умножать разность двух чисел на разность двух других чисел, то Диофант пользовался, правилом: «отнимаемое число, будучи умножено на отнимаемое, дает прибавляемое, а, будучи умножено на прибавляемое, дает отнимаемое».
При решении уравнений Диофант признавал только положительные рациональные ответы, и притом для квадратного уравнения он всегда вычислял только один ответ, если уравнение имело два рациональных и положительных корня. Каким методом он решал квадратные уравнения, неизвестно, так как в сохранившихся до нашего времени книгах этого объяснения не дано. Для решения уравнения 1-й степени Диофант прибегал к приемам, описанным им следующим образом: «Если теперь в какой-нибудь задаче те же степени неизвестного встречаются в обеих частях уравнения, но с разными коэффициентами, то мы должны вычитать равные из равных, пока не получим одного члена, равного одному числу. Если в одной или в обеих частях есть члены вычитаемые, то эти члены должны быть прибавлены к обеим частям так, чтобы в обеих частях были только прибавляемые. Затем снова нужно отнимать равные от равных, пока не останется только по одному члену с каждой стороны». Таким путем Диофант достигал того, чего мы добиваемся перенесением известных членов в одну сторону равенства, а неизвестных — в другую, приведением подобных членов и делением на коэффициент при неизвестном. При этом надо отметить, что Диофант, как и все древние математики, избегал действия деления, заменяя его повторным вычитанием.
Сочинения Диофанта были отправной точкой для теоретико-числовых исследований Пьера Ферма, Л. Эйлера, К. Гаусса и других математиков. Именем Диофанта названы три больших раздела :теория диофантовых уравнений (алгебраические уравнения или системы алгебраических уравнений с рациональными коэффициентами, решение которых отыскивается в целых и рациональных числах), дифантовый анализ (или диофантова геометрия; область математики, посвященная изучению диофантовых уравнений методами алгебраической геометрии) и теория диофантового приближения (раздел теории чисел, в котором изучаются приближения нуля значениями функций от конечного числа целочисленных аргументов).
Учеными, завершившими цикл математиков Александрийской школы, были Теон (IV в.) и его дочь Гипатия (370—415).
Теон проделал большую работу, комментируя труды Евклида и Птолемея. Что же касается Гипатии, то, по отзывам историков, она обладала большими знаниями в области математики и философии и комментировала труды Архимеда. Диофанта и Аполлония. Она является первой известной в истории математики женщиной-математиком. Ей принадлежат также философские труды по толкованию Платона, Аристотеля я других греческих философов. До нашего времени не сохранилось ни одного из трудов Гипатии. Высокая ученость и красноречие, которыми обладала Гипатия, ее деятельное участие в общественных делах города создали ей популярность в Александрии, но вместе с тем вызвали ненависть со стороны христианских религиозных фанатиков к ученой «язычнице». В 415 г. она по подстрекательству епископа Кирилла была растерзана толпой христианских изуверов. Последователи и ученики Гипатии, которым удалось спастись от преследования, бежали в Афины.
4.Евклид и его «Начала».
ЕВКЛИД Александрийский (предположительно 330—277 до н.э.) — математик Александрийской школы Древней Греции, автор первого дошедшего до нас трактата по математике. Е. (возможно) получил образование в Академии Платона (Афины). Свои труды Е. писал по единой схеме в форме дедуктивно систематизированных обозрений открытий древнегреческих математиков классического периода. Известны такие работы Е. по математике, как трактаты "О делении фигур", "Конические сечения" (в четырех книгах), "Феномены" (посвященныесферической геометрии), "Поризмы", а также работы по астрономии, музыке и оптике, в которых ведущая роль отводилась математике. В сочинениях Е. "Оптика" и "Катоптрика" — хронологически первых систематических исследованиях свойств лучей света — рассматривались проблемы зрения и его применения для определения размеров различных предметов, построена теория зеркал. Эти сочинения были математическими и по содержанию, и по структуре: основное место в них, как и в "Началах", отводилось теоремам, аксиомам и определениям. В своем главном труде "Начала" (латинизированное — "Элементы") Е. в 15 книгах изложил основные свойства пространства и пространственных фигур, т.е. планиметрию, стереометрию и элементы теории чисел как подведение итогов предыдущего развития математики в Древней Греции и закладку оснований для дальнейшего развития математики. В книге Е. "Начала" математика выступала, пишет М.Клайн, "...как идеальная версия того, что составляло содержание известного нам реального мира...". Каждая книга "Начал" начинается с определений. В первой книге "Начал" приведены постулаты и аксиомы, за ними расположены в строгом порядке теоремы и задачи на построение (так, что доказательство или решение чего-либо последующего опирается на предыдущие). Там же введены 23 предварительных определения объектов геометрии. Были введены определения угла, плоскости, квадрата, круга, сферы, призмы, пирамиды, пяти правильных многогранников и др.
«Начала» Евклида.
Эта книга намного превосходила более поздние труды математиков, она сыграла огромную роль в истории математики. Достаточно сказать, что она была переведена на все языки мира и выдержала около 500 изданий. До середины XIX века все математики учились по «Началам» Евклида.
«Начала» Евклида состоят из 13 книг:
I – VI посвящены планиметрии;
VII – IX – арифметике;
Х – несоизмеримым величинам;
XI–XIII – стереометрии (XIII посвящена правильным многогранникам).
Но не все из того, что уже было известно, изложено в «Началах», например, теория конических сечений в «Началах» не была представлена.
Каждой из 13 книг «Начал» предпосылаются основные предложения, необходимые для вывода всех предложений рассматриваемой книги. Эти предложения делятся на 3 категории: определения, аксиомы и постулаты.
Первая книга «Начал» начинается с 23-х определений. Приведём список некоторых определений «Начал»:
1. Точка есть то, что не имеет частей.
2. Линия есть длина без ширины.
3. Границы линии суть точки.
. . .
23. Параллельные суть прямые, которые, находясь в одной плоскости и будучи продолжены в обе стороны неограниченно, ни с той ни с другой стороны между собой не встречаются.
За определениями следуют постулаты и аксиомы, т. е. предложения, принимаемые без доказательства. Полный список аксиом и постулатов данный Евклидом не сохранился. Известно 5 постулатов и 10 аксиом.
Постулаты:
Требуется,
1. Чтобы из каждой точки ко всякой другой точке можно было провести прямую линию.
2. И чтобы каждую ограниченную прямую можно было продолжать неограниченно.
3. И чтобы из каждой точки, как из центра, можно было произвольным радиусом описать окружность.
4. И чтобы все прямые углы были равны друг другу.
V постулат:
5. И чтобы всякий раз, когда прямая при пересечении с двумя другими прямыми образует с ними внутренние односторонние углы, сумма которых меньше 2-х прямых, эти прямые пересекались с той стороны, с которой эта сумма меньше 2-х прямых.
Аксиомы:
1. Равные порознь третьему равны между собой.
2. И если к равным прибавим равные, то получим равные.
. . .
6. И половины равных равны между собой.
. . .
8. И целое больше части.
9. И две прямые не могут заключить пространства.
С современной точки зрения, одно из слабых мест «Начал» Евклида – это определения. Он дает определения таких понятий как точка, плоскость, прямая, т. е. стремится дать определение всем геометрическим понятиям, а это невозможно. Многие его определения крайне туманны, например:
1. «Прямая есть линия, которая одинаково расположена относительно всех своих точек».
2. «Плоскость есть поверхность, которая одинаково расположена по отношению ко всем прямым, на ней лежащим».
Евклид в «Началах» разделил постулаты и аксиомы. Но трудно провести между ними строгую грань. С современной точки зрения все они могут называться аксиомами. Другой важный недостаток «Начал» – неполнота системы аксиом: нет аксиомы непрерывности, аксиом движения и порядка, связанных с терминами «между» и «вне».
Огромное историческое значение «Начал» Евклида в том, что они являются первым крупным научным документом по геометрии, в котором сделана попытка логического построения геометрии на основе аксиом. Чтобы закончить характеристику «Начал» Евклида необходимо остановиться на особо важном вопросе – о V постулате Евклида и попытках его доказательства.
2.7.1.3. V постулат.
«Начала» Евклида на протяжении более двух тысяч лет подвергались тщательному изучению. Имеется огромная литература, содержащая комментарии к «Началам». Уже древние комментаторы заметили, что «Начала» содержат существенные недостатки, в связи с этим предпринимались попытки их устранения. Особое внимание критиковавших «Начала» Евклида привлекал к себе V постулат.
V постулат занимает в системе постулатов «Начал» особое положение в силу ряда глубоких соображений. Прежде всего, обращает на себя внимание то обстоятельство, что утверждение, содержащееся в V постулате, не имеет столь простого и очевидного характера, какой имеют прочие постулаты. Во-вторых, формулировка V постулата носит довольно сложный и громоздкий характер. И наконец, третья особенность заключается в весьма своеобразном использовании Евклидом этого постулата. В то время, как все остальные постулаты используются им с самого начала, при изложении первых теорем, V постулат применяется впервые лишь в доказательстве 29-го предложения.
Таким образом, применение V постулата в «Началах» Евклида резко разграничивает геометрические предложения на две категории: на предложения, доказываемые без помощи V постулата; и на предложения, которые не могут быть доказаны без его использования. Предложения первой категории называются абсолютной геометрией, а второй – образует так называемую собственную евклидову геометрию.
Изложенные особенности V постулата имели большое значение для последующего развития геометрии. Исследователи, жившие после Евклида, и комментаторы «Начал», рассматривали V постулат, как предложение, которое не следует помещать среди постулатов, а необходимо доказать как теорему. Они были убеждены в его доказуемости. Поэтому усилия многих поколений математиков были направлены на то, чтобы доказать V постулат при помощи остальных постулатов и тем самым свести его в разряд теорем. В этом и заключалась проблема V постулата Евклида.
Решением этой проблемы занимались многие математики, в том числе: Посидоний (I в. до н. э.), Птолемей (III в. до н. э.), Прокл (410 – 475 гг), Насир-Эддин (1201 – 1274 гг.), Д. Валлис (1616 – 1703 гг.), Ламберт (1728 – 1777 гг.), Лежандр (1752 – 1833 гг.), Гаусс (1777 – 1855 гг.), И. Больяи (1802 – 1860 гг.). Все они неизменно оканчивались неудачей. Авторы доказательств в своих рассуждениях использовали явным или скрытым образом наглядно очевидные предложения, которые при тщательном анализе оказывались предложениями эквивалентными самому постулату.
Например, наиболее интересная попытка доказательства была предпринята итальянским математиком Джироламо Саккери (1667 – 1733 гг.) – священник, профессор университета. Он пытался заменить V постулат Евклида его отрицанием и попытался вывести теорему, которая противоречила бы одной из доказанных Евклидом теорем. Полученное противоречие показало бы, что его предположение ложно и V постулат можно вывести из остальных. В процессе поиска он получил теорему, которая противоречила ранее полученным результатом, и написал книгу «Евклид, избавленный от всех пятен». Однако впоследствии математики выяснили, что Саккери в действительности не пришел к противоречию, и вопрос по-прежнему остается открытым.
В середине XVIII в. над этой проблемой размышлял немецкий математик Ламберт. В отличие от Саккери, он понял, что любой набор гипотез, который не приводит к противоречию, порождает новую геометрию, и убедился, что V постулат Евклида невозможно вывести из остальных аксиом, т. е. аксиома о параллельных независима от остальных.
Насколько велик труд, затраченный на исследования, связанные с проблемой доказательства V постулата, можно судить по тому, что известно около 250 серьёзных сочинений, посвящённых теории параллельности и не достигших поставленной цели. Однако, несмотря на безрезультатность и тщетность всех попыток доказательства V постулата, они всё же не были бесполезны. В результате этих многовековых поисков были выявлены логические зависимости между некоторыми важными геометрическими предложениями и, в частности, были открыты предложения, эквивалентные V постулату. Например, в современной школьной практике V постулат известен, как аксиома параллельных Плейфера: «Через точку, лежащую вне данной прямой, можно провести только одну прямую, параллельную данной».
5.Архимед и его главное открытие.
Архимед родился в 287 году до нашей эры в греческом городе Сиракузы, расположенного на восточном побережье острова Сицилии, где и прожил почти всю свою жизнь. Отцом его был Фидий, придворный астроном правителя города Гиерона. Учился Архимед, как и многие другие древнегреческие ученые, в Александрии, где правители Египта Птолемеи собрали лучших греческих ученых и мыслителей, а также основали знаменитую, самую большую в мире библиотеку. После учебы в Александрии Архимед вновь вернулся в Сиракузы и унаследовал должность своего отца. В теоретическом отношении труд этого великого ученого был ослепляюще многогранным. Основные работы Архимеда касались различных практических приложений математики (геометрии), физики, гидростатики и механики.
Если ко всему перечисленному прибавить еще то, что сделано Архимедом в области механики, то станут понятными то изумление и уважение, с которыми к нему относились его современники и теперь относятся все те, кто близок к математике, механике и прикладным наукам.
Пленяет и высокий моральный облик Архимеда. Он был подлинным патриотом своего города. Когда настали тяжелые дни для Сиракуз и римские войска под командованием Марцелла осадили город с двух сторон и никто из осажденных уже не надеялся на спасение, вот тут-то и привел Архимед в действие свои машины, которые задолго до этого он построил.
«В неприятельскую пехоту неслись пущенные им раз личного рода стрелы и невероятной величины камни с шумом и страшной быстротой. Решительно ничто не могло вынести силы их удара; они опрокидывали тех, в кого они попадали, и расстраивали их ряды. На море внезапно поднимались со стен над кораблями бревна, загнутые на подобие рога. Одни из них ударяли в некоторые корабли сверху и силой удара топили их; другие железными ла пами или клювами, наподобие журавлиных, схватывали корабли за носы, поднимали их на воздух, ставили корабль на корму и затем топили . . . Часто корабль поднимало высоко над поверхностью моря, и, вися в воздухе, он к ужасу окружающих качался в разные стороны, являя собой страшное зрелище, пока весь экипаж не был сброшен или перестрелян . . . Самбука, машина, которую Марцелл поставил на несколько кораблей и подводил к стенам . . . еще далеко не успела подойти к ним, как из-за них вылетел камень весом в десять талантов, за ним другой, третий . . . Они падали на машину со страшным шумом и силой, разбили ее корпус, разорвали болты и уни чтожили связи, так что Марцелл, не зная что делать, решил отплыть поспешно с флотом и приказал пехоте отступать ... но стрелы и здесь настигали их, попадали в отступающих, так что они понесли большие потери . . . Марцелл все же успел избежать опасности. Он шутил над своими техниками и механиками и говорил: «Уж не перестать ли нам драться с математиком? Он, сидя спо койно за стеной, топит наши корабли и, бросая в нас разом столько стрел, оставляет позади мифических сто руких великанов. Действительно, все остальные сираку зяне служили своего рода телом архимедовых машин, один он был душой, которая всех двигала, все направ ляла» (Плутарх).
Машины Архимеда могли защитить город только от неприятельских приступов, но не могли спасти осажденных от голода. Марцеллу удалось, наконец, ворваться в город. Взятие Сиракуз, как и других городов, попавших в руки римлян, сопровождалось невероятными актами жестокости, убийствами и грабежами. В числе убитых был и Архимед.
Плутарх пишет: «Он находился один в своем жилище, углубленный в рассмотрение геометрических чертежей. Будучи всем умом и чувствами погружен в размышления, он не обратил внимания на шум и крики римлян, вор вавшихся в город. Вдруг перед ним предстал римский солдат. Архимед успел только крикнуть: «Не трогай моих чертежей, -как меч солдата поразил его».
В заключение хочется привести высказывание Плу тарха о глубине геометрических положений Архимеда.
«Во всей геометрии нет теорем более трудных и более глубоких, нежели теоремы Архимеда.
Мне самому всегда казалось, когда я впервые знако мился с его математическими предложениями, что они до того трудны, что ум человеческий не в состоянии найти им доказательства. Однако, когда узнаешь, как сам Архимед их доказывает, то тебе кажется, будто ты сам нашел это доказательство — до того оно просто и легко».
Великие открытия архимеда
В сочинении "Параболы квадратуры" Архимед обосновал метод расчета площади параболического сегмента, причем сделал это за две тысячи лет до открытия интегрального исчисления. В труде "Об измерении круга" Архимед впервые вычислил число "пи" - отношение длины окружности к диаметру - и доказал, что оно одинаково для любого круга. Мы до сих пор пользуемся придуманной Архимедом системой наименования целых чисел. Некоторые теоремы планиметрии также впервые были доказаны Архимедом. Так, теорема о площади треугольника по трем его сторонам
указанную формулу называют формулой Герона, потому что ему принадлежит заслуга широкого применения её на практике.
приписываемая Герону, впервые была предложена Архимедом. Математический метод Архимеда, связанный с математическими работами пифагорейцев и с завершившей их работой Эвклида, а также с открытиями современников Архимеда, подводил к познанию материального пространства, окружающего нас, к познанию теоретической формы предметов, находящихся в этом пространстве, формы совершенной, геометрической формы, к которой предметы более или менее приближаются и законы которой необходимо знать, если мы хотим воздействовать на материальный мир. Но Архимед знал также, что предметы имеют не только форму и измерение: они движутся, или могут двигаться, или остаются неподвижными под действием определенных сил, которые двигают предметы вперед или приводят в равновесие. Великий сиракузец изучал эти силы, изобретая новую отрасль математики, в которой материальные тела, приведенные к их геометрической форме, сохраняют в то же время свою тяжесть. Эта геометрия веса и есть рациональная механика, это статика, а также гидростатика, первый закон которой открыл Архимед (закон, носящий имя Архимеда), согласно которому на тело, погруженное в жидкость, действует сила, равная весу вытесненной им жидкости. Однажды приподнявши ногу в воде, Архимед констатировал с удивлением, что в воде нога стала легче. "Эврика! Нашел!" - воскликнул он, выходя из своей ванны. Анекдот занятный, но, переданный таким образом, он не точен. Знаменитое "Эврика!" было произнесено не в связи с открытием закона Архимеда, как это часто говорят, но по поводу закона удельного веса металлов - открытия, которое также принадлежит сиракузскому ученому и обстоятельные детали которого находим у Витрувия. Рассказывают, что однажды к Архимеду обратился Гиерон, правитель Сиракуз. Он приказал проверить, соответствует ли вес золотой короны весу отпущенного на нее золота. Для этого Архимед сделал два слитка: один из золота, другой из серебра, каждый такого же веса, что и корона. Затем поочередно положил их в сосуд с водой, отметил, на сколько поднялся ее уровень. Опустив в сосуд корону, Архимед установил, что ее объем превышает объем слитка. Так и была доказана недобросовестность мастера. Любопытен отзыв Цицерона, великого оратора древности, увидевшего "архимедову сферу" - модель, показывающую движение небесных светил вокруг Земли: "Этот сицилиец обладал гением, которого, казалось бы, человеческая природа не может достигнуть". И, наконец, Архимед был не только великим ученым, он был, кроме того, человеком, страстно увлеченным механикой. Он проверяет и создает теорию пяти механизмов, известных в его время и именуемых "простые механизмы". Это - рычаг ("Дайте мне точку опоры, - говорил Архимед, - и я сдвину Землю"), клин, блок, бесконечный винт и лебедка. Именно Архимеду часто приписывают изобретение бесконечного винта, но возможно, что он лишь усовершенствовал гидравлический винт, который служил египтянам при осушении болот.
Впоследствии эти механизмы широко применялись в разных странах мира. Интересно, что усовершенствованный вариант водоподъемной машины можно было встретить в начале XX века в монастыре, находившемся на Валааме, одном из северных российских островов. Сегодня же архимедов винт используется, к примеру, в обыкновенной мясорубке. Изобретение бесконечного винта привело его к другому важному изобретению, пусть даже оно и стало обычным, - к изобретению болта, сконструированного из винта и гайки. Тем своим согражданам, которые сочли бы ничтожными подобные изобретения, Архимед представил решительное доказательство противного в тот день, когда он, хитроумно приладив рычаг, винт и лебедку, нашел средство, к удивлению зевак, спустить на воду тяжелую галеру, севшую на мель, со всем ее экипажем и грузом. Еще более убедительное доказательство он дал в 212 году до нашей эры.
6. Н.И.Лобачевский – первооткрыватель неевклидовой геометрии.
Детство Лобачевского было тяжелым и бедным. В Казанской гимназии он был казеннокоштным студентом, что накладывало определенные обязанности и ограничения. Самым простым было учиться лучше других; но казеннокоштным студентам, например, не разрешалось выходить дальше, чем за пределы парадного двора. Но уже с самого начала жизни Лобачевский интересовался геометрией. Это неудивительно, ведь его отец был землемером. Лобачевский проявил также большую склонность к языкам – например, французский он выучил за три месяца. Он писал стихи – его поэмы о Волге считаются одними из лучших. Но при этом он не забывал учиться – в 1807 году он студент, а в 1811 – магистр. Работая над развитием геометрии, в 1826 году, уже будучи деканом физико-математического факультета, он сделал доклад, содержавший основы неевклидовой геометрии. Однако время было не совсем подходящим: открылись хищения из казны Магницким – ещё одним математиком этой эпохи, Магницкого «записали» в декабристы… Словом, ученому миру было не до новых теорий.
Но он не сдался. С 1829 по 1830 год он публиковал в журнале «Казанский вестник» мемуар «О началах геометрии», и это была первая публикация основ его теории.
Иногда говорят, что в геометрии Лобачевского параллельные прямые пересекаются в бесконечности. Но это не совсем так. Есть только немного другое свойство параллельности: через одну точку вне прямой можно провести бесконечно много прямых, параллельных данной. Это видно на рисунке 1. Причем параллельность сохраняется только в сторону уменьшения расстояния между прямыми. Этот, казалось бы, простой факт, меняет всю геометрию. Как, например, в геометрии Евклида доказывается, что сумма углов треугольника равна 180о ? Классическое доказательство приведено на рисунке 2. Используется свойство углов при накрест лежащих прямых, и выходит, что Ð1+Ð2+Ð3=180о . Но так как в геометрии Лобачевского параллельность сохраняется только в одном направлении, то для нахождения суммы углов треугольника*, то нужно провести две прямые, параллельные данной в разные стороны. Что получается, видно на рисунке 3. Понятно, что теперь сумма углов треугольника меньше 180о . Эта разница была названа Лобачевским дефектом треугольника.
Одними из важных объектов на плоскости Лобачевского являются пучки прямых. Но чтобы описать эти пучки, сначала надо уяснить, что в плоскости Лобачевского есть три типа расположения прямых: прямые или параллельны, или пересекаются, или являются расходящимися.
_______
* Здесь и далее подразумевается геометрия Лобачевского, если нет оговорки на геометрию Евклида.
Так вот, первый вид пучков образован прямыми, имеющими общую точку – центр пучка (рис. 4а). Пучок расходящихся прямых – это перпендикуляры к одной прямой – оси пучка (рис. 4б). Из этого определения выходит интересное и, казалось бы, абсурдное утверждение, что два перпендикуляра к одной прямой непараллельны, и отличие от геометрии Евклида.
И, наконец, пучок, образуемый прямыми, параллельными данной прямой в заданном направлении (рис. 4в).
Следующими объектами геометрии Лобачевского являются кривые. Для их построения Лобачевским было введено понятие соответственных точек. В пучке первого рода это точки на прямых, равноудаленные от центра (рис. 5а). В пучке второго рода это точки прямых, лежащие по одну сторону от оси и отстоящие от нее на одинаковые расстояния (рис. 5б). Наконец, в пучке третьего рода они расположены симметрично относительно биссектрисы полосы между двумя прямыми, на которых лежа эти точки (рис. 5в).
Соединив соответствующие точки первого пучка, мы получим окружность. В случае второго пучка мы получаем линию равных расстояний, а в третьем случае – так называемую предельную линию.
Примеры таких построений – на рисунке 6.
Из определения предельных линий выходит, что она бесконечна. Поэтому в теоремах используется понятие предельной дуги, или дуги предельной линии.
5 постулат.
Итак, мы дошли до пятого постулата. Сам Евклид формулировал его так: «Если прямая пересекает две прямые и образует внутренние односторонние углы в сумме меньше двух прямых, то при неограниченном продолжении этих двух прямых они пересекутся с той стороны, где сумма углов меньше двух прямых». Другие формулировки гораздо проще, например: «через точку вне прямой можно провести одну и только одну прямую, параллельную данной».
Конечно, ещё сам Евклид пытался вывести этот сложный постулат из более простых. После него этой проблемой занимались почти все известные математики, но чаще всего это заканчивалось тем, что постулат выводился только при принятии каких-то дополнительных предположений. У менее удачливых математиков не получалось вообще ничего.
Самую известную попытку доказать пятый постулат методом от противного предпринял итальянский монах Джироламо Саккерти в 1733 году. Но отрицание пятого постулата – это и есть главное отличие геометрии Лобачевского от геометрии Евклида. Он, как и другой математик И. Г. Ламберт в 1766 году, вплотную подошел к неевклидовой геометрии, но не нашел её реальной.
Гаусс, Больяи, Швейкарт, Тауринус – они все рано или поздно убеждались, что доказать пятый постулат невозможно. Сам Лобачевский говорил об этой проблеме: «Напрасные страданья … в продолжение двух тысяч лет». И именно он смог отверг этот постулат, создав новую геометрию.
Гаусс, изучая поверхности, обнаружил, что на поверхностях отрицательной кривизны сумма углов треугольника меньше 180о . Он был в шаге от опровержения пятого постулата.
Попыток было много – и именно недоказуемость этого предположения привела к открытию неевклидовой геометрии.
Геометрия Лобачевского в реальном мире.
Если геометрия Евклида является только частью геометрии Лобачевского, то выходит, что наш мир – не мир Евклида, как принято считать? Почему же мы не замечаем разницы?
Как пример можно привести тот факт, что видимый звездный свод это ни что иное, как предельная плоскость. Астрономам после признания достижений Лобачевского пришлось пересчитывать все расстояния между звездами – и ошибки достигали 1/6.
Но вернемся на землю. Есть такое понятие – гауссова кривизна пространства. Если мы возьмем кривую поверхность, проведем к какой-то точке касательную, проведем в точку касания отрезок, перпендикулярный касательной плоскости, то мы получим нормаль. Проведя через нормаль плоскость, мы можем найти окружность, наиболее плотно прилегающую к поверхности. Так как мы можем провести сколько угодно плоскостей, то мы можем найти окружности с минимальным и максимальным радиусом. Подставив их в выражение , мы получим Гауссову кривизну пространства. Если К>0, то поверхность в этой точке эллиптическая. Если К<0, то гиперболическая. Если К=0, то параболическая.
Как мы уже знаем, на поверхностях с отрицательной кривизной работает геометрия Лобачевского. Но именно такую кривизну имеют графики интенсивности всех электромагнитных полей! Состояние поверхности плазмы также описывается геометрией Лобачевского.
Но наглядно геометрию Лобачевского можно устроить и на бумаге. Если нарисовать окружность, то мы можем, не выходя за её пределы, провести сколько угодно прямых, не пересекающих данную (рис. 7).
Взяв сферу, можно построить стереометрическую модель. Такая модель называется моделью Клейна.
Все эти модели служат одной цели – полнее представить наш мир, не прибегая к вселенским масштабам.
7. Где встречаются геометрические фигуры в нашей жизни.
Геометрия в быту.
Стены, пол и потолок являются прямоугольниками. Многие вещи напоминают окружность, например, обруч, кольцо, тарелка. Арбуз, глобус, мячи - похожи на геометрический шар. Предметов, имеющих форму цилиндра и конуса в окружающем нас мире очень много: трубы, кастрюли, бочки, стаканы, консервные банки.
Геометрия в архитектуре.
В современной архитектуре смело используются самые разные геометрические формы. Многие жилые дома украшаются колоннами. Геометрические фигуры различной формы можно увидеть в постройке соборов и конструкциях мостов.
Геометрия транспорта.
По улице движутся автомобили, трамваи, троллейбусы, велосипеды. Их колёса с геометрической точки зрения – круги. Сложную форму имеет корпус подводной лодки. Корпус космического спутника состоит из цилиндров. Сложную форму имеют и детали машин – гайки, винты, зубчатые колёса.
Геометрия в природе.
В самой природе очень много замечательных геометрических форм. Необыкновенно красивы и разнообразны многоугольники, созданные природой. Кристаллы горного хрусталя напоминают отточенный карандаш. Кристалл соли имеет форму куба. А снежинки – это одна из самых красивых геометрических фигур. Обычная горошина, капельки росы – имеют форму шара.
Геометрия у животных.
Животные, конечно, же геометрию не изучали, но природа наделила их талантом строить себе дома в форме геометрических тел. Многие птицы строят гнёзда в форме полушара. Но самые искусные геометры – пчёлы. Они строят соты из шестиугольников.
Я изучила дополнительную литературу и узнала много интересного о зарождении геометрии, об ученых, внёсших большой вклад в её становление и развитие: о Пифагоре, Евклиде, Архимеде, Лобачевском. Мы должны гордиться этими учёными - основоположниками геометрии. Они стояли у истоков науки. Своё выступление хочу закончить словами Евклида: "Нет царской дороги в геометрии!" Верно сказано, так как, чтобы познать эту науку, нужны усидчивость, терпение, старание и титанический труд.
Проказы старухи-зимы
Весёлые польки для детей
Подарок
В какой день недели родился Юрий Гагарин?
Отчего синичка развеселилась