Исследовательская работа ученицы 9 класса Слюньковой Валерии о связи математики и растений.
Вложение | Размер |
---|---|
matematika_rasteniya.docx | 286.82 КБ |
Министерство образования РФ.
МКОУ Барлукская СОШ
Исследовательская работа по математике.
Работу выполнила:
учащаяся 9 класса
Слюнькова Валерия.
Руководитель работы:
учитель математики
Пушмина Татьяна Васильевна.
Барлук – 2014.
Цели работы:
Математическая красота растений.
Математика – удивительная и интересная наука, которую многие люди считают сложной для освоения, а потому скучной и неинтересной. Тем не менее, математикой пользуются существа, которых разумными назвать очень сложно (например, аквариумные рыбки гуппи). Тем более, что уж говорить о растениях! Но ни кто не будет спорить с тем, что математика сплошь присутствует в формах и строении растений.
Симметрия в растениях.
Симметрия – это соразмерность, одинаковость в расположении частей чего-нибудь по противоположным сторонам от точки, прямой или плоскости.
На явление симметрии в живой природе обратили внимание еще в Древней Греции пифагорийцы в связи с развитием ими учения о гармонии.
Центральную симметрию можно наблюдать на изображении следующих цветов: цветок одуванчика, цветок мать-и-мачехи, цветок кувшинки, сердцевина ромашки, а в некоторых центральной симметрией обладает и изображение всего цветка ромашки. На данном рисунке представлен подсолнечник.
В любом растении можно найти какую-то его часть, обладающую осевой или центральной симметрией. Это могут быть листья, цветы, стебли, стволы деревьев, плоды, и более мелкие части, такие как сердцевина цветка, пестик, тычинки и другие.
Веточка акации имеет зеркальную и поворотную симметрию. Веточка боярышника обладает скользящей осью симметрии. Гусиная лапчатка имеет поворотную симметрию и зеркальную.
Характерная для растений симметрия конуса хорошо видна на примере любого дерева, появляется вертикальная поворотная ось и вертикальная плоскость симметрии.
У цветковых растений в большинстве проявляется радиальная и билатеральная симметрия.
Золотое сечение в растениях.
В математике пропорцией называют равенство двух отношений.
a : b = c : d
Золотым сечением и даже «божественной пропорцией» называли математики древности и средневековья деление отрезка, при котором длина всего отрезка так относится к длине его большей части, как длина большей части к меньшей. Приближенно это отношение равно 0, 618 ≈5/8.
a: b = b : c
Золотое сечение чаще всего применяется в произведениях искусства, архитектуре, встречается в природе. В природе Золотое сечение появляется с завидной регулярностью: деревья, растения и цветы вместе с раковинами, бабочками и дельфинами характеризуются этой пропорцией.
Золотое сечение или золотая пропорция - это математическое и геометрическое выражение гармонии в природе. Что такое гармония? Это красота. Термин «золотая пропорция» или «золотое сечение» ввёл Леонардо да Винчи. Хотя открыто оно было задолго до него. Золотое сечение, также «Божественная пропорция» - это главная формула красоты.
Рассматривая расположение листьев на общем стебле растений, можно заметить, что между каждыми двумя парами листьев ( А и С) третья расположена в месте золотого сечения (точка В). |
Среди придорожных трав растет ничем не примечательное растение – цикорий. Приглядимся к нему внимательно. От основного стебля образовался отросток. Тут же расположился первый листок.
Рис. Цикорий.
Отросток делает сильный выброс в пространство, останавливается, выпускает листок, но уже короче первого, снова делает выброс в пространство, но уже меньшей силы, выпускает листок еще меньшего размера и снова выброс. Если первый выброс принять за 100 единиц, то второй равен 62 единицам, третий – 38, четвертый – 24 и т.д. Длина лепестков тоже подчинена золотой пропорции. В росте, завоевании пространства растение сохраняло определенные пропорции. Импульсы его роста постепенно уменьшались в пропорции золотого сечения.
Числа Фибоначчи и растения.
С историей золотого сечения косвенным образом связано имя итальянского математика монаха Леонардо из Пизы, более известного под именем Фибоначчи (сын Боначчи). Он много путешествовал по Востоку, познакомил Европу с индийскими (арабскими) цифрами. В 1202 г вышел в свет его математический труд «Книга об абаке» (счетной доске), в котором были собраны все известные на то время задачи. Отметим, что сам Фибоначчи открыл знаменитый ряд чисел, размышляя над задачей о количестве кроликов, которые в течении одного года должны родиться от одной пары. У него получилось, что в каждом последующем месяце после второго число пар кроликов в точности следует цифровому ряду, которое ныне носит его имя. Размышляя на эту тему, Фибоначчи выстроил такой ряд цифр:
Месяцы | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | и т.д. |
Пары кроликов | 0 | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 83 | 144 | и т.д. |
Этот ряд чисел 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 и т.д. известен как ряд Фибоначчи. Особенность последовательности чисел состоит в том, что каждый ее член, начиная с третьего, равен сумме двух предыдущих 2 + 3 = 5; 3 + 5 = 8; 5 + 8 = 13, 8 + 13 = 21; 13 + 21 = 34 и т.д., а отношение смежных чисел ряда приближается к отношению золотого деления.
В 1997 году несколько странных особенностей ряда описал исследователь Владимир Михайлов, который был убежден, что Природа (в том числе и Человек) развивается по законам, которые заложены в этой числовой последовательности.
Замечательным свойством числового ряда Фибоначи является то, что по мере увеличения чисел ряда отношение двух соседних членов этого ряда асимптотически приближается к точной пропорции Золотого сечения (1:1,618) основе красоты и гармонии в окружающей нас природе, в том числе и в человеческих отношениях.
Числа Фибоначчи привлекли математиков своей особенностью возникать в самых неожиданных местах. Замечено, например, что отношения чисел Фибоначчи, взятых через одно, соответствуют углу между соседними листьями на стебле растений, точнее, они говорят, какую долю оборота составляет этот угол: 1/2 - для вяза и липы, 1/3 - для бука, 2/5 - для дуба и яблони, 3/8 - для тополя и розы, 5/13 - для ивы и миндаля и т. д. Эти же числа вы найдете при подсчете семян в спиралях подсолнуха, в количестве лучей, отражающихся от двух зеркал, в количестве вариантов маршрутов переползания пчелы от одной соты к другой, во многих математических играх и фокусах.
Спираль Фибоначчи.
Все, что приобретало какую-то форму, образовывалось, росло, стремилось занять место в пространстве и сохранить себя. Это стремление находит осуществление в основном в двух вариантах – рост вверх или расстилание по поверхности земли и закручивание по спирали.
Раковина закручена по спирали. Если ее развернуть, то получается длина, немного уступающая длине змеи. Небольшая десятисантиметровая раковина имеет спираль длиной 35 см. Спирали очень распространены в природе. Представление о золотом сечении будет неполным, если не сказать о спирали.
Еще Гете подчеркивал тенденцию природы к спиральности. Винтообразное и спиралевидное расположение листьев на ветках деревьев подметили давно. Спираль увидели в расположении семян подсолнечника, в шишках сосны, ананасах, кактусах и т.д. Совместная работа ботаников и математиков пролила свет на эти удивительные явления природы. Выяснилось, что в расположении листьев на ветке (филотаксис), семян подсолнечника, шишек сосны проявляет себя ряд Фибоначчи, а стало быть, проявляет себя закон золотого сечения. Паук плетет паутину спиралеобразно. Спиралью закручивается ураган. Испуганное стадо северных оленей разбегается по спирали. Молекула ДНК закручена двойной спиралью. Гете называл спираль «кривой жизни».
Спираль Фибоначчи в растениях. | Спираль Фибоначчи в цветке. |
Пример роста семян подсолнуха по спирали Фибоначчи. |
Листья на ветке растения всегда располагаются в строгом порядке, отстоя друг от друга на определённый угол по или против часовой стрелки. Величина угла разная у различных растений, но её всегда можно описать дробью, в числителе и знаменателе которой — числа из ряда Фибоначчи. Например, у бука этот угол равен 1/3, или 120°, у дуба и абрикоса — 2/5, у груши и тополя — 3/8, у ивы и миндаля — 5/13 и т.д. Такое расположение позволяет листьям наиболее эффективно получать влагу и солнечный свет.
Леонардо да Винчи вывел правило, согласно которому квадрат диаметра ствола дерева равен сумме квадратов диаметров ветвей, взятых на общей фиксированной высоте. Более поздние исследования подтвердили его с одним лишь отличием — степень в формуле необязательно равняется 2, а лежит в пределах от 1,8 до 2,3. Традиционно считалось, что эта закономерность объясняется тем, что у дерева с такой структурой оптимальный механизм снабжения веток питательными веществами. Однако в 2010 году американский физик Кристоф Эллой нашёл более простое механическое объяснение феномену: если рассматривать дерево как фрактал, то закон Леонардо минимизирует вероятность слома веток под воздействием ветра.
D2 = d12 + d22 + d32 + ……. + dn2
Растения умеют считать?
Недавно британские ученые поведали миру о потрясающем открытии. Математическими расчетами пользуются растения! Математика позволяет им регулировать запасы питательных веществ в ночное время.
Обнаружив биологический пример сложных арифметических расчетов, исследователи из расположенного в Норидже, Великобритания независимого международного Центра Джона Иннеса были поражены. Как следует из опубликованного в журнале e-Life научного отчета, математические модели показывают, что количество крахмала, потребляемого растениями каждой ночью, рассчитывается ими исходя из наличия запаса. Возможно, подобные механизмы могут использовать птицы, рачительно расходуя жир во время миграций.
Свои способности в ходе экспериментов ученым демонстрировал скромный сорняк, родственник горчицы и капусты Arabidopsis или резушка. Растение-космонавт, рекордсмен Книги Гиннесса известно тем, что в 1982 году впервые зацвело на космической станции Салют-7 и дало жизнеспособные семена, пророщенные на Земле спустя 10 лет.
Как известно, ночью, когда нет солнечно света, растения потребляют запасенные ими углеводы, регулируя потребление таким образом, чтобы протянуть до рассвета. Эксперименты ученых из Центра Джона Иннеса показывают, что для точной корректировки потребления крахмала растения должны выполнять арифметическое действие - деление.
«Они в самом деле используют математику простым химическим способом, что удивительно», - рассказала руководитель исследования профессор Элисон Смит (Alison Smith). «Это действие из программы начальной школы, но все же они используют математику».
В течение ночи некий механизм растения контролирует запас крахмала. Информация о времени поступает от внутренних биологических часов, наподобие тех, что есть у человека. По мнению исследователей, процесс связан с концентрацией двух видов молекул, названных S для крахмала и T для времени. Если S-молекулы стимулируют расход крахмала, то Т-молекулы, напротив, препятствуют этому. Таким образом, скорость процесса расходования питательного вещества задается соотношением молекул S и T, или S деленное на T. Комментируя исследование коллег, доктор Ричард Баггс из лондонского Университета Королевы Марии сказал: «Это не является доказательством наличия интеллекта у растений. Просто растения обладают механизмом для автоматического регулирования интенсивности потребления углеводов ночью. Растения не способны выполнять математические действия добровольно и с определенной целью, как это делаем мы».
Заключение.
Работая над этой темой, я получила новые знания. Думаю, что эти знания пригодятся мне в будущем. Возможно, я стану архитектором или строителем. Знания о «золотой пропорции» пригодятся мне. Теперь я буду лучше понимать и ценить прекрасное, особенно в родной природе.
Список
используемых ресурсов.
lenta.ru
en.wik
Новый снимок Юпитера
Как нарисовать зайчика
Твёрдое - мягкое
Карандаши в пакете
В.А. Сухомлинский. Для чего говорят «спасибо»?