Работа может быть использована на обобщающем уроке по темам "Производная", "Интеграл".
Вложение | Размер |
---|---|
ivanov_sergey.pptx | 523.77 КБ |
Слайд 1
ГБПОУ КНТ им. Б. И. Корнилова Исследовательская работа по теме: « применение Производных и интегралов в физике, математике и электротехнике.» Студента гр. 2014-эоп-33д иванова сергея .Слайд 2
Содержание: 4 .Применение производной и интеграла в математике. 5 .Применение производной и интеграла в физике. 6 .Применение производной и интеграла в электротехнике. 1 .История появления производной. 2 .История появления интеграла. 3 .История появления дифференциальных уравнений.
Слайд 3
1 .История появления производной. В конце 17 века великий английский учёный Исаак Ньютон доказал что Путь и скорость связаны между собой формулой: V ( t )= S ’( t ) и такая связь существует между количественными характеристиками самых различных процессов исследуемых : физикой, ( a = V ’= x ’’ , F = ma = m * x ’’ , импульс P = mV = mx ’ , кинетическая E = mV 2 /2= mx ’ 2 /2), химией, биологией, и техническими науками. Это открытие Ньютона стало поворотным пунктом в истории естествознания.
Слайд 4
1 .История появления производной. Честь открытия основных законов математического анализа наравне с Ньютоном принадлежит немецкому математику Готфриду Вильгельму Лейбницу. К этим законам Лейбниц пришел, решая задачу проведения касательной к произвольной кривой, т.е. сформулировал геометрический смысл производной, что значение производной в точке касания есть угловой коэффициент касательной или tg угла наклона касательной с положительным направлением оси О X . Термин производная и современные обозначения y ’ , f ’ ввёл Ж.Лагранж в 1797г.
Слайд 5
2 .История появления интеграла. Понятие интеграла и интегральное исчисление возникли из потребности вычислять площади (квадратуру) любых фигур и объёмы (кубатуру) произвольных тел. Предыстория интегрального исчисления восходит к древности. Первым известным методом для расчёта интегралов является метод для исследования площади или объёма криволинейных фигур - метод исчерпывания Евдокса ( Евдокс Книдский ( ок . 408 г. до н.э. - ок . 355 г. до н.э.) - древнегреческий математик, механик и астроном), который был предложен примерно в 370 до н. э. Суть этого метода заключается в следующем: фигура, площадь или объем которой пытались найти, разбивалась на бесконечное множество частей, для которых площадь или объём уже известны.
Слайд 6
«Метод исчерпывания» Предположим, что нам надо вычислить объём лимона, имеющего неправильную форму, и поэтому применить какую-либо известную формулу объёма нельзя. С помощью взвешивания найти объём также трудно, так как плотность лимона в разных частях его разная. Поступим следующим образом. Разрежем лимон на тонкие дольки. Каждую дольку приближённо можно считать цилиндриком , радиус основания, которого можно измерить. Объём такого цилиндра вычислить легко по готовой формуле. Сложив объёмы маленьких цилиндров, мы получим приближенное значение объёма всего лимона. Приближение будет тем точнее, чем на более тонкие части мы сможем разрезать лимон.
Слайд 7
2 .История появления интеграла. Вслед за Евдоксом метод «исчерпывания» и его варианты для вычисления объёмов и площадей применял древний учёный Архимед. Успешно развивая идеи своих предшественников , он определил длину окружности , площадь круга, объём и поверхность шара. Он показал, что определение объёмов шара, эллипсоида, гиперболоида и параболоида вращения сводится к определению объёма цилиндра.
Слайд 8
Основой теории дифференциальных уравнений стало дифференциальное исчисление , созданное Лейбницем и Ньютоном. Сам термин «дифференциальное уравнение» был предложен в 1676 году Лейбницем. 3 .История появления дифференциальных уравнений. Первоначально дифференциальные уравнения возникли из задач механики, в которых требовалось определить координаты тел, их скорости и ускорения, рассматриваемые как функции времени при различных воздействиях. К дифференциальным уравнениям приводили также некоторые рассмотренные в то время геометрические задачи.
Слайд 9
3 .История появления дифференциальных уравнений. Из огромного числа работ XVII века по дифференциальным уравнениям выделяются работы Эйлера (1707—1783) и Лагранжа (1736—1813). В этих работах была прежде развита теория малых колебаний, а следовательно — теория линейных систем дифференциальных уравнений; попутно возникли основные понятия линейной алгебры (собственные числа и векторы в n -мерном случае). Вслед за Ньютоном Лаплас и Лагранж, а позже Гаусс (1777—1855) развивают также методы теории возмущений.
Слайд 10
4 .Применение производной и интеграла в математике : В математике производную широко используют в решениях многих задач, уравнений, неравенств, а так же в процессе исследования функции. Пример: Алгоритм исследования функции на экстремум: 1)О.О.Ф. 2) y ′=f ′(x), f ′(x)=0 и решаем уравнение. 3)О.О.Ф. разбиваем на интервалы. 4)Определяем знак производной на каждом интервале. Если f ′(x)>0 , то функция возрастает. Если f ′(x)<0 , то функция убывает . 5)Находим значение функции в точках max и min.
Слайд 11
4 .Применение производной и интеграла в математике : Интеграл (определенный интеграл) используют в математике (геометрии) для нахождения площади криволинейной трапеции. Пример: Алгоритм нахождения площади плоской фигуры с помощью определенного интеграла: 1)Строим график указанных функций. 2)Указать фигуру ограниченную этими линиями. 3)Найти пределы интегрирования, записать определенный интеграл и вычислить его.
Слайд 12
5 .Применение производной и Интеграла в физике. В физике производную используют в основном для решения задач, например: нахождение скорости или ускорения каких-либо тел. Пример: 1)Закон движения точки по прямой задается формулой s(t)= 10t^2 , где t —время (в секундах), s(t) —отклонение точки в момент времени t (в метрах) от начального положения. Найди скорость и ускорение в момент времени t, если: t=1,5 с. 2)Материальная точка движется прямолинейно по закону x(t)= 2+20t+5t2. Найдите скорость и ускорение в момент времени t=2с (х – координата точки в метрах, t – время в секундах).
Слайд 13
Физическая величина Среднее значение Мгновенное значение Скорость Ускорение Угловая скорость Сила тока Мощность
Слайд 14
5 .Применение производной и Интеграла в физике. Интеграл также используется в задачах, например: нахождение скорости или пути. Тело движется со скоростью v(t) = t + 2 (м/с). Найти путь, который пройдет тело за 2 секунды после начала движения. Пример:
Слайд 15
6 .Применение производной и Интеграла в электротехнике. Производная также нашла применение в электротехнике. В цепи электрического тока электрический заряд меняется с течением времени по закону q=q (t). Сила тока I есть производная заряда q по времени . I=q ′(t ) Пример: 1)Заряд , протекающий через проводник , меняется по закону q=sin(2t-10) Найти силу тока в момент времени t=5 cек . Интеграл в электротехнике можно использовать для решения обратных задач, т.е. нахождение электрического заряда зная силу тока и т.д. 2)Электрический заряд протекающий через проводник, начиная с момента t = 0, задаётся формулой q(t ) = 3t2 + t + 2.Найдите силу тока в момент времени t = 3с. Интеграл в электротехнике можно использовать для решения обратных задач, т.е. нахождение электрического заряда зная силу тока и т.д.
Мастер-класс "Корзиночка"
Заколдованная буква
Пока бьют часы
Фокус-покус! Раз, два,три!
Кто грамотней?