Данный реферат занял второе место в Конкурсе студенческих рефератов в рамках проведения Областной олимпиады по математике среди студентов профессиональных образовательных организаций Самарской области.
Вложение | Размер |
---|---|
geometricheskaya_illyuziya_i_obman_zreniya.pdf | 1.24 МБ |
petrova_oksana_chhtt.pptx | 1.59 МБ |
Слайд 1
Автор: Петрова Оксана студентка 13 группы, ГБОУ СПО ЧХТ Геометрическая иллюзия и обманы зрения.Слайд 2
Почему совершаются ошибки в оценке и сравнении между собой длин отрезком, величин углов, в восприятии формы предметов и т.д. совершаемые наблюдателем при определенных условиях. Актуальность
Слайд 3
Объяснение зрительной иллюзии с точки зрения геометрии и провести социальные исследования. Цель
Слайд 4
1 Изучить теоретический материал по данной теме. 2 показать применение использования иллюзий в искусстве, в математике, в реальной жизни. 3 Провести исследование, показывающее ограниченность способности наших глаз Задачи
Слайд 5
Иллюзии Чертежи Предмет исследования Объект исследования Гипотеза Если наше восприятие обманчиво, то самые простые вещи, если к ним присмотреться, таят в себе самые неожиданные открытия . Зрительные иллюзии можно объяснить с помощью законов геометрии.
Слайд 6
1 Изучение 3 анализ, обобщение Методы исследования 2 поиск 4 синтез, классификация
Слайд 7
Разновидности иллюзий
Слайд 8
Оптические иллюзии Оптические иллюзии – это, попросту говоря оптический обман нашего мозга. Когда наш глаз получает картинку – включается огромное количество процессов в нашем мозге.
Слайд 9
Оптические иллюзии
Слайд 10
Рассмотрим фигуру составленную из ромбов и треугольников. Правда ли, что ширина меньше, чем высота? Вывод: Тем не менее, они одинаковы, и если мы соединим вершины острых углов, то получим квадрат.
Слайд 11
Иллюзия движения Восприятие движения – очень сложный процесс, природа которого еще не вполне выяснена. Если предмет объективно движется в пространстве, то мы воспринимаем его движение вследствие того, что он выходит из области наилучшего видения и этим заставляет нас передвигать глаза или голову, чтобы вновь фиксировать на нем взгляд .
Слайд 12
иллюзии движения, на использовании которых основан принцип кинематографа. Смотрите в центр картинки (справа). Появится мерцание фиолетовых и синих колец. Некоторые замечают ещё и циркулярное вращение. А на картинке слева пристально смотрите на шар в центре. Кажется, что узор на нём движется из стороны в сторону. Не отрывая взгляда от центра круга, подвигайте головой. Возникла иллюзия, что узор вокруг шара сдвигается.
Слайд 13
Вертикально-горизонтальная иллюзия. Вертикальная линия воспринимается как более длинная. Если же на рисунок одним глазом, то эффект несколько уменьшается. Ощущение вертикального и горизонтального направлений зависит не только от зрительных впечатлений, ног и от стереотипов, сформировавшихся в мозгу человека
Слайд 14
Вертикально-горизонтальная иллюзия. Учащимся было предложено определить «на глаз» какая из линий длиннее: вертикальная или горизонтальна. Вертикальная длина Одинаковые по длине Я знаю этот эффект Всего 18 (75%) 4 (18%) 2 (7%) 24 (100%)
Слайд 15
Иллюзия Франца Мюллера-Лайера . Стрелки на концах отрезков создают иллюзию искажения длины, поэтому одинаковые отрезки воспринимаются как неодинаковые. Но на самом деле отрезки равны.
Слайд 16
Дети (20) Взрослые (10) Всего (30 ) Отрезки равны 4 (20%) 4 (40%) 8 (27%) Голубой отрезок больше 16 (80%) 6 (60%) 22 (73%) Иллюзия Мюллера-Лайера В ерно определили 20% детей и 40% взрослых.
Слайд 17
Иллюзия Поггендорфа . Удивительное впечатление производит картинка с двумя параллельными пересекаемыми наклонной прямой. Если правую линию продолжить, то она пересечётся левой в её верхнем конце. Кажущаяся точка пересечения находится несколько правее.
Слайд 18
Продолжением прямой А Продолжением прямой В Между прямыми А и В Всего 3 (17%) 4 (23%) 10 (60%) 17(100%) Иллюзия Поггендорфа Учащимся был задан вопрос: «Продолжением какой прямой является прямая С?»
Слайд 19
Иллюзия параллелограмов . Поразительную иллюзию создают углы – тупой и острый; диагонали АВ и АС двух параллелограмов равны, хотя диагональ АС кажется гораздо короче.
Слайд 20
Иллюзия параллелограммов
Слайд 21
Невозможные плитки. Сколько плиток изображено на картинке ниже? Если смотреть слева, то четыре. Если смотреть справа, то три.
Слайд 22
Площадь двух треугольников На картинке ниже вы видите 2 треугольника. Треугольники состоят из четырех фигур. Площадь фигур, из которых состоят треугольники, одинакова. Что у верхнего, что у нижнего (можете вырезать из бумаги и проверить). Что будет если фигуры немного перемешать?
Слайд 23
Иллюзия покосившихся квадратов. Очень интересный оптический фокус. Глядя на эту картинку, наш мозг уверяет нас в том, что синие квадраты в центре этой картинки, немного перекосило, и их то и дело клонит на бок. Но расфокусировав взгляд или просто немного отойдя от картинки компьютера, я понимаю, что это правильные четырёхугольники, и что это всего лишь иллюзия.
Слайд 24
Эффект персептивной готовности Если посмотреть на картинку ниже, то непонятно сразу какой символ изображён в центре. Данный пример наглядно демонстрирует так называемый эффект персептивной готовности. Суть его заключается в том, что в зависимости от того, откуда вы начали читать, вы готовы увидеть разные символы. Если сверху вниз, то число 13. Если слева направо, то букву “В”.
Слайд 25
Рельефное изображение. Мозг, воспринимая предмет, искажает видимое нами рельефное изображение. Примером тому служит приводимый рисунок: куб то кажется видимым сверху, то сбоку; раскрытая книга то кажется изображенной корешком к нам, то корешком от нас. Это происходит как по нашему желанию, так и непроизвольно и иногда даже наперекор нашему желанию. Дело в том, что любое изображение может быть истолковано разными способами, однако зрительная система человека отдает предпочтение наиболее привычной и вероятной интерпретации.
Слайд 26
Невозможные фигуры. Фигуры, не существующие в природе, но, существующие в нашем воображении Анализ предложенного объяснения оптико-геометрических иллюзий показывает, что, во-первых, все параметры зрительного образа взаимосвязаны, благодаря чему и возникает целостное восприятие, воссоздается адекватная картина внешнего мира. Во-вторых, на восприятие влияют сформированные повседневным опытом стереотипы. Примером того, как можно разрушить целостный образ объекта, служат так называемые "невозможные", противоречивые фигуры, например, невозможный трезубец Нормана Минго и невозможная лестница Пенроуза
Слайд 27
Иллюзия глазами художников Н Некоторые художники изменяют логику изображений пространства, получая различные иллюзии. Под "логикой" пространства мы понимаем те отношения между физическими объектами, которые обычны для реального мира, и при нарушении которых возникают визуальные парадоксы, называемые еще оптическими иллюзиями. Большинство художников, экспериментирующие с логикой пространства, изменяют эти отношения между объектами, основываясь на своей интуиции, как, например, Пикассо. Прекрасный горный пейзаж. Поверните картинку вправо: теперь перед вами молящиеся мать и сын. Перевертыш «Малыш и дедуля»
Слайд 28
Задачи. Иллюзия Селфриджа . Если вы хоть немного знакомы с английским языком, то для вас не составит особого труда прочитать название домашнего животного на картинке ниже. Как видно из названия, первым этот обман зрения описал Селфридж ( Selfridge , 1955). Суть его заключается в том, что в зависимости от контекста один и тот же символ воспринимается как “Н” или как “А”? Ответ: посмотрите внимательно, ведь на картинке написана абракадабра THE CHT, а не THE CAT.
Слайд 29
Иллюзия с ведром. Равны ли внутренний круг на крышке ведра и круг, образующий дно ведра? Ответ: внутренний круг на крышке ведра кажется меньше круга, образующего дно ведра. Однако эти круги равны, при этом трудно отделаться от мысли, что нижний больше верхнего. Присутствие наружного окаймляющего овала создаёт иллюзию, будто заключённый в нём овал меньше нижнего. Какой отрезок больше: АВ или CD ? Ответ: они равны .
Слайд 30
Иллюзия в реальной жизни. Оптические иллюзии на дороге. Зрительные иллюзии в одежде. Женщина справа кажется стройнее. Вертикальные полосы удлиняют стены комнаты и она кажется выше Водитель видит нарисованные объекты и думает, что на дороге есть барьер, он снижает скорость, чтобы переехать через него, хотя на самом деле это абсолютно ровная поверхность.
Слайд 31
Рассмотрим задачу построения перспективного изображения фигуры На рисунке показано, как получается изображение произвольной точки М плоскости α (цифры 1—4 указывают порядок проведения прямых). Если точка К не лежит в предметной плоскости, то сначала из нее опускают перпендикуляр на α ( на рис. это отрезок КМ), затем для его основания (точки М) выполняют построения 1—3. Наконец, проводят прямую КО, пересечение которой с плоскостью π и есть изображение точки К.
Слайд 32
Сравним относительные размеры нескольких находящихся в поле зрения предметов . Если предметы удалены от глаз на одно и то же расстояние и расположены достаточно близко друг к другу, их сравнить легко. В этом случае мы редко ошибаемся в своей оценке: более высокий предмет виден под большим углом, поэтому и кажется выше. Усложним задачу. Расположим предметы на разном расстоянии от глаза, в том числе предметы разного размера. Тогда их видимые размеры кажутся одинаковыми.
Слайд 33
Вывод. А это означает, что независимо от формы предметов, наблюдаемое явление должно описываться «на языке математики» одним и тем же законом, в котором ключевую роль играют, вероятно, такие параметры, как линейный размер и расстояние до предмета.
Слайд 34
Определить высоту столба (вышки, дерева и т. п ,) Отойдем от столба на расстояние, на котором больший палец вытянутой вперед руки закроет его полностью,(то есть их видимые размеры станут одинаковыми), подсчитав при этом число сделанных шагов. Для взрослого человека среднее расстояние от глаза до большого пальца вытянутой руки составляет 60 см, длина самого пальца - 7 см, а длина шага - 65 см. По этим данным легко вычислить примерную высоту столба. Аналогично определяется расстояние до недоступного объекта по его известной высоте. Отметим, что описанн ый способ надежен для оценки сравнительно близких расстояний до нескольких сотен метров; чем меньше предмет и чем дальше он находится, тем выше погрешность измерений.
Слайд 35
Вывод: С позиции геометрии, во всех приведенных примерах мы имеем дело с подобными фигурами или соответствующими отрезками, а именно высотами, различных по форме фигур; более того, в каждом случае мы сталкиваемся с преобразованием гомотетии, центр которой совпадает с глазом наблюдателя. Поэтому можно утверждать, что если два предмета видны под одним углом зрения, то их линейные размеры отличаются во столько же раз, во сколько раз отличаются расстояния до предмета):
Слайд 36
Рассмотрим две «убегающие» от нас параллельные линии (трамвайные или железнодорожные). Они кажутся сходящимися в некоторой точке горизонта. При этом сама точка представляется нам бесконечно удаленной и недосягаемой. Зрение словно пытается убедить нас в том, что вопреки законам геометрии параллельные прямые пересекаются. Доказательство: эта иллюзия объясняется рассмотренной нами выше особенностью зрительного восприятия. Существует предельное значение угла зрения - наименьшее значение, при котором глаз способен видеть раздельно две точки .
Слайд 37
Вывод: Существует предельное значение угла зрения - наименьшее значение, при котором глаз способен видеть раздельно две точки .
Слайд 38
Социальные исследования. Эксперимент №2 При восприятии фигуры и фона мы склонны видеть, прежде всего, пятна меньшей площади, а также пятна более яркие “выступающие”, причем чаще всего фон нам кажется лежащим дальше от нас, за фигурой. Чем больше контраст яркости, тем лучше заметен объект и тем отчетливее видны его контур и форма. Мы решили провести эксперимент и проверить этот вывод. Мы показали опрашиваемым следующий рисунок и попросили сказать, что они видят. Предполагалось, что на рисунке большинство увидят в первую очередь вазу, а затем два силуэта, согласно теории. Ваза Рубина В ходе эксперимента наше предположение не оправдалось, что видно из таблицы: Восприятие фигуры и фона
Слайд 39
Дети (20) Взрослые (10) Всего (30) Увидели вазу 10 (50%) 2 (20%) 12 (40%) Увидели лица 8 (40%) 4 (40%) 12 (40%) Увидели вазу и лица 2 (10%) 4 (40%) 6 (20%) Восприятие фигуры и фона Если рассмотреть детей отдельно от взрослых, то получается следующая картина, что вазу не увидели 8 человек (40%) обучающихся и 4 человека (40%) врослых .
Слайд 40
Эксперимент №4 . "Невозможная" лестница Пенроуза . Дети (20) Взрослые (10) Всего (30) Движется 11 (55%) 8 (80%) 19 (63%) Стоит - 7 (35%) 2 (10%) 1 (10%) 1 (10%) 8 (27%) 3 (10%) на восприятие взрослых сформированные повседневным опытом стереотипы влияют в большей мере, чем на детей
Слайд 41
Заключение Начиная изучать геометрическую иллюзию Я задала себе Такой вопрос :всегда ли мы можем доверять нашему зрению? Оказывается, нет! Учёные придумали и построили много обманчивых картинок, наглядно демонстрирующих, сколь ограничены возможности наших глаз. В ходе своей работы Я поняла, что Геометрические иллюзии создают богатые возможности для художников, фотографов, модельеров. Однако инженерам и математикам приходится быть осторожными с чертежами и подкреплять ”очевидное” точными расчётами.
"Морская болезнь" у космонавтов
Красочные картины Джастина Геффри
Как нарисовать зайчика
Рисуем подснежники гуашью
Акварель + трафарет = ?