Презентация
Вложение | Размер |
---|---|
evklid.pptx | 1.48 МБ |
Слайд 1
Презентация на тему: Евклидова геометрия. Ученицы ГБОУ СОШ №1392 Юносовой Дарьи.Слайд 2
Биография. Евклид ( ок . 365 — 300 до н. э.) — древнегреческий математик. Работал в Александрии в 3 в. до н. э. Главный труд «Начала» (15 книг), содержащий основы античной математики, элементарной геометрии, теории чисел, общей теории отношений и метода определения площадей и объемов, включавшего элементы теории пределов, оказал огромное влияние на развитие математики. Работы по астрономии, оптике, теории музыки.
Слайд 4
Сведения о времени и месте его рождения до нас не дошли, однако известно, что Евклид жил в Александрии и расцвет его деятельности приходится на время царствования в Египте Птолемея I Сотера . Известно также, что Евклид был моложе учеников Платона (427—347 до н. э.), но старше Архимеда ( ок . 287—212 до н. э.), так как, с одной стороны, был платоником и хорошо знал философию Платона (именно поэтому он закончил «Начала» изложением т. н. платоновых тел, т. е. пяти правильных многогранников), а с другой стороны — его имя упоминается в первом из двух писем Архимеда к Досифею «О шаре и цилиндре». С именем Евклида связывают становление александрийской математики (геометрической алгебры) как науки.
Слайд 5
Прокл в комментариях к первой книге «Начал» приводит известный анекдот о вопросе, который будто бы задал Птолемей Евклиду: «Нет ли в геометрии более краткого пути, чем (тот, который изложен) в «Началах»? На что Евклид якобы ответил, что «в геометрии не существует царской дороги» (аналогичный анекдот рассказывается также об Александре и ученике Евдокса Менехме , так что он принадлежит, видимо, к числу «бродячих сюжетов»).
Слайд 6
«Начала» Из дошедших до нас сочинений Евклида наиболее знамениты «Начала», состоящие из 15 книг. В 1-й книге формулируются исходные положения геометрии, а также содержатся основополагающие теоремы планиметрии, среди которых теорема о сумме углов треугольника и теорема Пифагора. Во 2-й книге излагаются основы геометрической алгебры. 3-я книга посвящена свойствам круга, его касательных и хорд. В 4-й книге рассматриваются правильные многоугольники, причем построение правильного пятнадцатиугольника принадлежит, видимо, самому Евклиду. Книга 5-я и 6-я посвящены теории отношений и ее применению к решению алгебраических задач. Книга 7-я, 8-я и 9-я посвящены теории целых и рациональных чисел, разработанной пифагорейцами не позднее 5 в. до н. э. Эти три книги написаны, по-видимому, на основе не дошедших до нас сочинений Архита .
Слайд 7
В книге 10-й рассматриваются квадратичные иррациональности и излагаются результаты, полученные Теэтетом . В книге 11-й рассматриваются основы стереометрии. В 12-й книге с помощью исчерпывания метода Евдокса доказываются теоремы, относящиеся к площади круга и объему шара, выводятся отношения объемов пирамид, конусов, призм и цилиндров. В основу 13-й книги легли результаты, полученные Теэтетом в области правильных многогранников. Книги 14-я и 15-я не принадлежат Евклиду, они были написаны позднее: 14-я — во 2 в. до н. э., а 15-я — в 6 в.
Слайд 9
Другие сочинения Евклида Вторым после «Начал» сочинением Евклида обычно называют «Данные» — введение в геометрический анализ. Евклиду принадлежат также «Явления», посвященные элементарной сферической астрономии, «Оптика» и «Катоптрика», небольшой трактат «Сечения канона» (содержит десять задач о музыкальных интервалах), сборник задач по делению площадей фигур «О делениях» (дошел до нас в арабском переводе). Изложение во всех этих сочинениях, как и в «Началах», подчинено строгой логике, причем теоремы выводятся из точно сформулированных физических гипотез и математических постулатов. Много произведений Евклида утеряно, об их существовании в прошлом нам известно только по ссылкам в сочинениях других авторов.
Слайд 10
Еще о Евклиде: О жизни этого ученого почти ничего не известно. До нас дошли только отдельные легенды о нем. Первый комментатор «Начал» Прокл (V век нашей эры) не мог указать, где и когда родился и умер Евклид. По Проклу , «этот ученый муж» жил в эпоху царствования Птолемея I. Некоторые биографические данные сохранились на страницах арабской рукописи XII века: «Евклид, сын Наукрата , известный под именем «Геометра», ученый старого времени, по своему происхождению грек, по местожительству сириец, родом из Тира». Одна из легенд рассказывает, что царь Птолемей решил изучить геометрию. Но оказалось, что сделать это не так-то просто. Тогда он призвал Евклида и попросил указать ему легкий путь к математике. «К геометрии нет царской дороги», — ответил ему ученый. Так в виде легенды дошло до нас это ставшее крылатым выражение.
Слайд 11
Царь Птолемей I, чтобы возвеличить свое государство, привлекал в страну ученых и поэтов, создав для них храм муз — Мусейон . Здесь были залы для занятий, ботанический и зоологический сады, астрономический кабинет, астрономическая башня, комнаты для уединенной работы и главное — великолепная библиотека. В числе приглашенных ученых оказался и Евклид, который основал в Александрии — столице Египта — математическую школу и написал для ее учеников свой фундаментальный труд. Именно в Александрии Евклид основывает математическую школу и пишет большой труд по геометрии, объединенный под общим названием «Начала» — главный труд своей жизни. Полагают, что он был написан около 325 года до нашей эры.
Слайд 12
Как современников, так и последователей Евклида привлекала систематичность и логичность изложенных сведений. «Начала» состоят из тринадцати книг, построенных по единой логической схеме. Каждая из тринадцати книг начинается определением понятий (точка, линия, плоскость, фигура и т. д.), которые в ней используются, а затем на основе небольшого числа основных положений (5 аксиом и 5 постулатов), принимаемых без доказательства, строится вся система геометрии.
Слайд 14
Евклидова геометрия. Начало геометрии дал древнегреческий ученый Евдем Родосский. Геометрия возникла в Египте при измерение земли. Сезострис , египетский царь, - рассказывает греческий историк Геродот, живший в 5 веке до н. э.,- произвёл деление земель , отмежевав каждому египтянину участок по жребию. Приведенные тексты древнегреческих авторов Геродота и Евдемма Родосского очень ценны. Они утверждают о всеобщих геометрических знаниях в Египте более 4000 лет назад. А также сохранились и подлинные записи египетской математике. Самым древним является папирус, написанный примерно в 1900 г. До н.э. Папирус приобрёл известный русский египтолог В.С. Голенищев в 1893 г. А в 1912 г. он стал достоянием Московского музея. В Московском папирусе среди 25 задач математике также содержится 7 геометрических.
Слайд 15
Еще хранится в Британском музее папирус Ахмеса . В этом папирусе рассмотрено решение 84 прикладных задач, в том числе 20 геометрических. Особую роль в дальнейшем развитии геометрии сыграло накопление геометрических знаний в Египте и в Вавилоне. Около двух с половиною тысяч лет назад греки начинают заимствовать геометрические познания у египтян и вавилонян. В Греции эти знания сначала почти исключительно применяются к измерению земельных участков. Отсюда и появляется греческое название “геометрия”. Первым испытал свои силы в написании такого сочинения геометрии 5 в. до н.э. Гиппократ Хиосский , научная деятельность которого протекала в Афинах. В основу своих геометрических знаний Гиппократ положил простейшие геометрические свойства, подтверждённые многовековым опытом человечества. Остальные же предложения геометрии он стремился вывести из исходных путем рассуждений.
Слайд 16
Следующем этапом стала теоретическое сочинение по математике “Начала” Евклида. ”Начала” и является главной из всех работ Евклида. ”Начала” составлены по чёткой логической схеме, выработанной до Евклида. В соответствии с ней сначала формулируется определения и аксиомы, а затем такие предложения, которые сопровождаются доказательствами. “Начала” состоит из 13 книг. Которые из них 9 геометрических, а первые 6 книг посвящены планиметрии и последние 3- стереометрии. Первая книга начинается с 23 «определений», среди них такие: точка есть то, что не имеет частей; прямая есть линия, одинаково расположенная относительно всех своих точек. Первые четыре книги «Начал» посвящены геометрии на плоскости, и в них изучаются основные свойства прямолинейных фигур и окружностей.
Слайд 17
В книге 1 даны определения понятий, используемых в дальнейшем. Они носят интуитивный характер, поскольку определены в терминах физической реальности: «точка есть то, что не имеет частей», «поверхность есть то, что имеет только длину и ширину», и т.д. За этими определениями следуют пять требований или постулатов: Допустим: что от всякой точки до всякой точки можно провести прямую линию; и что ограниченную прямую можно непрерывно продолжить по прямой; и что из всякого центра и всяким раствором может быть описан круг; и что все прямые углы равны между собой; и если прямая, падающая на две прямые, образует внутренние и по одну сторону углы, меньшие двух прямых, то продолженные неограниченно эти две прямые встретятся с той стороны, где углы меньше двух прямых.
Слайд 19
Три первых постулата обеспечивают существование прямой и окружности. Пятый, так называемый постулат о параллельных – самый знаменитый. Затем Евклид сформулировал аксиомы, которые в противоположность постулатам, справедливым только для геометрии, применимы ко всем наукам. Аксиомы – это такие очевидные вещи, которые, по словам Аристотеля, «необходимо знать каждому, кто будет что-то изучать». Постулат – это лишь принцип, который геометр предлагает принять своему собеседнику, но который не является ни «очевидным», ни «аксиоматическим» и который можно отвергнуть, не приходя к противоречию.
Слайд 21
Сформулировав определения, постулаты и аксиомы, Евклид доказывает в книге 1 свойства треугольников среди которых – условия равенства, причем два треугольника равны, если они совмещаются при наложении. Далее описывается построения биссектрисы угла, отрезка и перпендикуляра к прямой. В эту книгу включены также теория параллельных и вычисление площадей некоторых плоских фигур
Слайд 23
В книге 2 заложены основы так называемой геометрической алгебры. Все величины в ней представлены геометрически, и операции над числами выполняются геометрически. Произведение двух чисел, АВ, таким образом, – не что иное, как площадь прямоугольника со сторонами А и В. Произведение трех чисел – объем. Книга 3 целиком посвящена геометрии окружности, а в книге 4 изучаются правильные многоугольники, вписанные в окружность, а также описанные вокруг нее. Книга 5 написана на более высоком уровне, а теория отношений, которая в ней изучается, – вещь очень тонкая. Теория пропорций представляет собой шедевр математической литературы всех времен. На протяжении многих веков она интересовала математиков. Однако построение множества чисел не входило в намерение Евклида, он лишь стремился обосновать измерение величин.
Слайд 25
Евклид включает в понятие величины длины, площади, объемы, веса, углы, временные интервалы, хотя нигде об этом не писал. Отказавшись использовать геометрическую очевидность, избегая также обращение к арифметике, он не приписывал величинам численных значений. Книга 6 также посвящена планиметрии. В книгах 7-9 изложены начала теории чисел, основанные на алгоритме нахождения наибольшего общего делителя, приводится алгоритм Евклида, сюда входят теории делимости и теорема о бесконечности множества простых чисел. Книга 10 читается с трудом, но считается одной из самых тонких; она содержит классификацию квадратичных иррациональных величин, которые там представлены геометрически прямым и прямоугольниками. Книга 11 посвящена стереометрии. В книге 12, с помощью метода исчерпывания площади криволинейных фигур сравниваются с площадями многоугольников. Предметом книги 13 является построение правильных многогранников.
Слайд 27
«Начала» – не единственный труд Евклида, ему принадлежат, кроме того: « Data », близко связанное с первыми четырьмя книгами Начал. «О делении фигур», которое сохранилось частично и только в арабском переводе и дает деление геометрических фигур на две или более части, равные или состоящие в заданном отношении. « Phaenomena », посвященное приложениям сферической геометрии к проблемам астрономии. «Оптика», посвященное теории перспективы «Катоптрика», посвященное математической теории зеркал. Первое издание состоялось в Париже, 1557. «Начала конических сечений» в четырёх книгах. Не сохранилось. Упоминается в I книге «Конических сечений» Аполлония Пергского . «Геометрические места на поверхностях». Упоминается у Паппа Александрийского (VII книга Математического собрания). Не сохранилось.
Слайд 28
В число утверждений, которые принимаются в “Началах” без доказательства, входила и аксиома о параллельных линиях. Эта аксиома по многим причинам смущала математиков. Она значительно сложнее других аксиом. Сложнее и по утверждаемому его факту, и по своей формулировке. С этой целью стремились доказать аксиому о параллельных. Пытались логически вывести её утверждение из остальных аксиом Евклида. Не один раз казалось, что многовековые поиски доказательств правили, наконец, к успеху. Великий русский математик Н.И. Лобачевский впервые строго научно установил полную бесплодность попыток доказательств аксиом о параллельных. Он доказал, что утверждение этой аксиомы нельзя вывести из остальных аксиом Евклида. Геометрия Лобачевского в настоящее время имеет широкое применение. На неё опираются очень многие теории современной физики и астрономии. Однако область применений геометрии Евклида остаётся достаточно широкой. Её должны знать все , независимо от своей будущей специальности. А потому евклидову геометрию изучают и будут изучать в школах.
Слайд 29
I. Аксиомы сочетания. 1) Через каждые две точки можно провести прямую и притом только одну. 2) На каждой прямой лежат по крайней мере две точки. Существуют хотя бы три точки, не лежащие на одной прямой. 3) Через каждые три точки, не лежащие на одной прямой, можно провести плоскость и притом только одну. 4) На каждой плоскости есть по крайней мере три точки и существуют хотя бы четыре точки, не лежащие в одной плоскости. 5) Если две точки данной прямой лежат на данной плоскости, то и сама прямая лежит на этой плоскости. 6) Если две плоскости имеют общую точку, то они имеют ещё одну общую точку (и, следовательно, общую прямую).
Слайд 30
II. Аксиомы порядка. 1) Если точка В лежит между А и С, то все три лежат на одной прямой. 2) Для каждых точек А, В существует такая точка С, что В лежит между А и С. 3) Из трёх точек прямой только одна лежит между двумя другими. 4) Если прямая пересекает одну сторону треугольника, то она пересекает ещё другую его сторону или проходит через вершину (отрезок AB определяется как множество точек, лежащих между А и В; соответственно определяются стороны треугольника).
Слайд 31
III. Аксиомы движения 1) Движение ставит в соответствие точкам точки, прямым прямые, плоскостям плоскости, сохраняя принадлежность точек прямым и плоскостям. 2) Два последовательных движения дают опять движение, и для всякого движения есть обратное. 3) Если даны точки А, A` и полуплоскости A, A‘, ограниченные продолженными полупрямыми а, а`, которые исходят из точек А, A`, то существует движение, и притом единственное, переводящее А, а, Aв A`, a`, A` (полупрямая и полуплоскость легко определяются на основе понятий сочетания и порядка).
Слайд 32
IV. Аксиомы непрерывности. 1) Аксиома Архимеда: всякий отрезок можно перекрыть любым отрезком, откладывая его на первом достаточное число раз (откладывание отрезка осуществляется движением). 2) Аксиома Кантора: если дана последовательность отрезков, вложенных один в другой, то все они имеют хотя бы одну общую точку.
Слайд 33
V. Аксиома параллельности Евклида. Через точку А вне прямой а в плоскости, проходящей через А и а, можно провести лишь одну прямую, не пересекающую а. Возникновение Евклидовой геометрии, тесно связано с наглядными представлениями об окружающем нас мире (прямые линии — натянутые нити, лучи света и т. п.). Длительный процесс углубления наших представлений привёл к более абстрактному пониманию геометрии. Открытие Н. И. Лобачевским геометрии, отличной от Евклидова геометрия,, показало, что наши представления о пространстве не являются априорными
Слайд 35
Спасибо за внимание!!!
Нечаянная победа. Айзек Азимов
Выбери путь
Свадьба в Малиновке
Астрономический календарь. Декабрь, 2018
Повезло! Стихи о счастливой семье