Вложение | Размер |
---|---|
reshenie_starinnykh_zadach.ppt | 1.79 МБ |
Слайд 1
Работу выполнили Ильин Дмитрий и Яшин Кирилл, ученики 8-ого класса Руководитель: Жилова З.Г., учитель математикиСлайд 2
Увлечение математикой часто начинается с размышлений над какой-то особенно понравившейся задачей. Она может встретиться и на школьном уроке, и на занятии математического кружка, и в журнале или книжке. А меня очень заинтересовали старинные задачи, с которыми мы столкнулись на уроке математики. И я решил узнать о них больше. Старинные задачи пришли к нам из глубины веков, от наших предков. Разные народы нашей планеты придумывали их, оттачивали условия и логику заданий. Они неизбежно остроумны и занимательны, в них собраны замечательные находки многих поколений. Введение
Слайд 3
Старинные задачи позволяют не только развить смекалку и сообразительность, но и почувствовать прикосновение других эпох, порадоваться пришедшему решению точно так же, как когда-то, быть может, радовались наши предки. Наши предки умели думать и решать задачи. Очень многие сказки воспевают смекалку и скорость мышления, благодаря которым герои обретают счастье. Такие качества, как сообразительность, оригинальность слова и дела, уникальность и мастерство всегда были и будут в цене. Конечно, задач и головоломок за века было придумано неисчислимое множество, и я специально отобрал лучшие из них.
Слайд 4
Еще в древние века математика занимала основное место в умах ученых и благодаря сохранившимся рукописям у нас есть возможность проследить за развитием математической мысли и возможность прорешать старинные задачи и сравнить их решение с современным решением. Цель исследования: выявление роли и места старинных задач в современном мире, рассмотрение различных способов решения старинных задач. Задачи исследования: исследовать решение старинных задач методом перебора; методом подбора; методом предположения, алгебраическим способом; наглядно-геометрическим способом исследовать старинный способ решения задач на сплавы и смеси.
Слайд 5
Диофант Его называют отцом алгебры Диофант умел решать очень сложные уравнения, он применял для этого буквенные обозначения и другие приемы. Биографические данные зашифрованы в виде математической задачи, начертанной на его гробнице .
Слайд 6
Задача № 1 Жизнь Диофанта . По преданию, на могильном камне имелась такая надпись: «Путник! Под этим камнем покоится прах Диофанта, умершего в глубокой старости. Шестую часть своей долгой жизни он был ребёнком, двенадцатую- юношей, седьмую- провёл неженатым. Через 5 лет после женитьбы у него родился сын, который прожил вдвое меньше отца. Через четыре года после смерти сына уснул вечным сном и сам Диофант, оплакиваемый своими близкими. Скажи, если умеешь считать, сколько прожил Диофант?»
Слайд 12
Довольно часто приходится смешивать различные жидкости, порошки, разбавлять что-либо водой или наблюдать испарение воды. В задачах такого типа эти операции приходится проводить мысленно и выполнять расчёты. При решении задач на смеси считается, что рассматриваемые смеси однородны: не делается различия между литром как единицей массы и как единицей ёмкости. Концентрацией вещества называется отношение массы этого вещества к массе всей смеси (раствора, сплава). Концентрация вещества, выраженная в процентах, называется процентным отношением вещества в смеси (растворе, сплаве). Существует старинный способ решения задач на смеси и сплавы. Задачам подобного типа уделялось значительное внимание в старинных рукописях и «Арифметике» Л.Ф.Магницкого.
Слайд 13
Лео́нтий Фили́ппович Магни́цкий (9(19)июня 1669- 19(30)октября 1739) Магницкий Л.Ф. (при рождении Телятин)- русский математик, педагог; преподаватель математики в Школе математических и навигацких наук в Москве (с 1701 по 1739), автор первой в России учебной энциклопедии по математике (в 1703г. «Арифметика»), которая более ста лет являлась основным учебным пособием по математике в России.
Слайд 14
Задача 1 . Смешивая 5% и 40% растворы кислот, необходимо получить 30% раствор. В каком соотношении их необходимо взять? Параметры конечного продукта Параметры исходных продуктов Доли исходных продуктов в конечном продукте 30% 5% 40% 40-30 30-5 1-ый продукт 2-ой продукт 10 частей 25 частей Соотношение первого и второго растворов – 10:25 или 2:5.
Слайд 15
Задача 1а. Смешивая 5% и 40% растворы кислот, необходимо получить 30% раствор. Сколько грамм каждой кислоты необходимо смешать, чтобы получить 140 г 30%- ого раствора? Решение: Сколько всего частей? 2 + 5 = 7(ч) Сколько грамм приходится на одну часть? 140 : 7 = 20(г) Сколько грамм 5%-го раствора взять? 2 · 20 = 40(г) Сколько грамм 40%-го раствора взять? 5 · 20 = 100(г) Ответ: для получения 140г 30%-ного раствора нужно взять 5%-ного раствора 40г, а 40%-ного - 100 г.
Слайд 16
Заключение Математика в настоящее время все шире проникает в повседневную жизнь, все более внедряется в традиционно далекие от нее области. Компьютеризация общества, внедрение современных информационных технологий требует математической грамотности человека почти на каждом рабочем месте. Это предполагает и конкретные математические знания, и определенный стиль мышления, вырабатываемый математикой. Решение задач различными способами способствует углублению знаний, логического мышления, расширяет кругозор. «Кто с детских лет занимается математикой, тот развивает внимание, тренирует свой мозг, свою волю, воспитывает настойчивость и упорство в достижении цели». (А. Маркушевич) .
Слайд 17
Ознакомление с историческими фактами позволяет лучше понять роль математики в современном обществе, углубляют понимание изучаемого раздела программы. В результате изученной темы было выяснено, что существует множество методов различных старинных задач. Естественно, все их виды рассмотреть невозможно. Также мы научились правильно анализировать задачи и решать их разными методами (путём составления уравнений, т.е методом ложного положения, методом полного перебора вариантов и т.д) и разными способами: алгебраическим и арифметическим (старинным). Арифметические способы решения текстовых задач имеют больший развивающий потенциал, чем универсальный алгебраический способ решения. В наше время предпочтение отдаётся алгебраическому способу.
Карты планет и спутников Солнечной системы
Сказка на ночь про Снеговика
Ласточка
Знакомимся с плотностью жидкостей
Сказка "Узнай-зеркала"