Теориетический материал на тему "Системы счисления" в виде демонстрации.
Вложение | Размер |
---|---|
Теоретический материал на тему "Системы счисления" | 510.61 КБ |
Слайд 1
Системы счисления Логинов Сергей, ученик 12 группыСлайд 2
Система счисления –это: символический метод записи чисел, представление чисел с помощью письменных знаков. Система счисления: дает представления множества чисел (целых или вещественных). дает каждому числу уникальное представление (или, по крайней мере, стандартное представление). отражает алгебраическую и арифметическую структуру чисел.
Слайд 4
Непозиционная система счисления Непозиционной называется такая система счисления, в которой от положения цифры в записи числа не зависит величина, которую она обозначает. Непозиционные системы счисления возникли раньше позиционных. В этих системах счисления значение (величина) числа определяется как сумма или разность цифр в числе .
Слайд 5
В самой древней нумерации употреблялся лишь знак "|" для единицы, и каждое натуральное число записывалось повторением символа единицы столько раз, сколько единиц содержится в этом числе. Сложение в такой нумерации сводилось к приписыванию единиц, а вычитание - к их вычеркиванию. Для изображения сколько – нибудь больших чисел этот способ нумерации непригоден из - за своей громоздкости. При начальном обучении в школе, когда счет ведется в пределах одного - двух десятков, этот способ нумерации успешно применяется (счет на палочках). В непозиционных системах счисления смысл каждого знака сохраняется и не зависит от его места в записи числа.
Слайд 6
К более современным непозиционным системам относят египетскую иероглифическую систему нумерации, в которой имелись определенные знаки для чисел: единица - I , десять - n , сто - ρ и так далее; эти числа называются узловыми. Все остальные натуральные числа, называемые алгоритмическими числами, записываются единообразно при помощи единственной арифметической операции - сложения. Например ,число 243 запишется в виде ρρ nnnn III , 301 - в виде ρρρ I .
Слайд 7
Примеры непозиционных систем К непозиционным системам относят римскую нумерацию. За узловые числа в этой системе принимают числа: единица - I , пять - V , десять - X , пятьдесят - L , сто - С, пятьсот - D , тысяча - М. Все алгоритмические числа получаются при помощи двух арифметических операций: сложения и вычитания. Вычитание производится тогда, когда знак, соответствующий меньшему узловому числу, стоит перед знаком большего узлового числа, например, VI - шесть (5+1= 6), ХС – девяносто(100-10=90), 1704 - МОСС IV , 193 -СХСШ, 687 - DCLXXXII . В римской нумерации заметны следы пятеричной системы счисления, так как в ней имеются специальные знаки для чисел 5, 50 и 500.
Слайд 8
При записи чисел использовался не только принцип сложения, но и принцип умножения. Например, в старо — китайской системе счисления числа 20 и 30 изображались схематически, как 2,10 и 3,10. числа 10, 100, 1000 имели определенные специальные обозначения. Число 528 записывалось так: 5,100,2,10,8. Наиболее удобными среди непозиционных систем счисления являются алфавитные системы нумерации. Примерами таких систем могут служить ионийская система (Древняя Греция), славянская, еврейская, грузинская и армянская. Во всех алфавитных системах существенным является обозначение специальными символами - буквами в алфавитном порядке всех чисел от 1 до 9, всех десятков от 10 до 90 и всех сотен от 100 до 900. Чтобы отличать запись чисел от слов над буквами, обозначающими цифры, в греческой и славянской нумерации ставилась черта.
Слайд 9
В греческой системе счисления число 543 записывалось: φμγ (φ - 500, μ- 40, γ- 3). В римской системе счисления это число записывается в виде DXLIII , в египетской иероглифической - в виде ρρρρρ nnn III . Из этого примера видно преимущество алфавитной нумерации, в которой используется цифровой принцип обозначения единиц, десятков, сотен. В записи больших чисел в алфавитной системе уже виден переход к позиционной системе записи. Например, 32543 записывалось так:
Слайд 10
Недостатки непозиционных систем счисления: 1. Для записи больших чисел приходиться вводить новые цифры. 2. Невозможно записывать дробные и отрицательные числа. 3. Сложно выполнять арифметические операции.
Слайд 11
Позиционные системы счисления Позиционная система счисления - это совокупность определений и правил, позволяющих записывать любое натуральное число с помощью некоторых значков или символов, каждый из которых имеет определенный смысл в зависимости от его места в записи числа (от его позиции). Чаще всего применяют позиционную систему счисления с фиксированным основанием. Основанием системы может быть любое натуральное число ρ, ρ>1
Слайд 12
Систематической записью натурального числа N по основанию ρ называют представление этого числа в виде суммы: N = а n ρ n +...+а 1 ρ, + а 0, где а n , ..., а 1 , а 0 - числа принимающие значения 0, 1, ..., ρ - 1, причем, а n ≠0. Позиционная система счисления с основанием ρ называется ρ — ичной (двоичной, троичной и так далее).
Слайд 13
Для обозначения чисел 0, 1, ..., ρ - 1 в ρ - ичной системе счисления используют особые знаки, называемые цифрами. Древнеиндийские математики открыли нуль - особый знак, который должен был показать отсутствие единиц определенного разряда. Для ρ - ичной системы счисления нужно ρ цифр. Если ρ < 10, то применяются те же обозначения цифр, что и в десятичной системе счисления (только берутся цифры, меньше основания системы). В системах с основанием ρ > 10 для чисел, больших или равных 10, не вводят специальных символов, а используют десятичную запись этих чисел, заключая эту запись в скобки. Например, в четырнадцатеричной системе имеется четырнадцать цифр: 0, 1, 2, 3 ... 9, (10), (11), (12), (13).
Слайд 14
В системе счисления с основанием ρ, так же как и в десятичной системе счисления, место, занимаемое цифрой, считая, справа налево, называется разрядом. Число N = а n ρ n + . . . + a 1 ρ +а 0 содержит а 0 единиц первого разряда, а 1 единиц второго разряда, а 2 единиц третьего разряда и так далее. Единица следующего разряда в ρ раз больше единицы предыдущего разряда. Позиционные системы счисления удовлетворяют требованию возможности и однозначности записи любого натурального числа.
Слайд 15
Десятичная система счисления, ее происхождение и применение. Десятичная нумерация "изобретена" индусами; в Европу ее занесли арабы, вторгшиеся в Испанию в VIII в. нашей эры. Арабская нумерация распространилась по всей Европе, и, будучи проще и удобнее остальных систем счисления, быстро их вытеснила. До сих пор наши цифры принято называть арабскими. Впрочем, за тысячу лет все цифры, кроме 1 и 9, сильно изменились. Вот, для сравнения, наши (называемые арабскими) и настоящие арабские цифры:
Слайд 16
Десятичная система счисления используется в практической жизни при счете предметов, которых очень много, например, жителей страны, при измерении различных величин и т.п. Таким образом, для обозначения и записи чисел мы пользуемся позиционной десятичной нумерацией. Позиционной она называется потому, что значение цифры зависит от ее положения - места в ряду других цифр в записи числа; десятичной - потому, что из двух написанных рядом цифр левая обозначает единицы в десять раз большие, чем правая. Для обозначения и записи чисел в пределах миллиарда эта система очень удобна.
Слайд 17
Двенадцатеричная система счисления Ее происхождение тоже связано со счетом на пальцах: так как четыре пальца руки (кроме большого) имеют в совокупности двенадцать фаланг, то по этим фалангам, перебирая их по очереди большим пальцем, и ведут счет от одного до двенадцати. Затем двенадцать принимается за единицу следующего разряда и так далее.
Слайд 18
В устной речи остатки двенадцатеричной системы сохранились и до наших дней: вместо того, чтобы сказать "двенадцать" часто говорят "дюжина". Многие предметы (ножи, вилки, тарелки) очень часто считают именно дюжинами, а не десятками; сервизы бывают, как правило, на двенадцать или шесть персон. Другой пример: двенадцать месяцев в году, двенадцать цифр на циферблате часов.
Слайд 19
Восьмеричная система счисления Восьмеричная система счисления - позиционная система счисления с основанием 8. Для представления чисел в ней используются арабские цифры. Используется всего восемь цифр - 0, 1, 2, 3, 4, 5, 6, 7.Восьмеричная система часто используется в областях, связанных с цифровыми устройствами. Характеризуется лёгким переводом восьмеричных чисел в двоичные и обратно, путём замены восьмеричных чисел на триады двоичных. Широко использовалась в программировании в 1950-70-ые гг. и вообще в компьютерной документации, однако в настоящее время почти полностью вытеснена шестнадцатеричной.
Слайд 20
Шестидесятеричная система счисления Шестидесятеричная система счисления существовала и возникла в Древнем Вавилоне. Мнения историков по поводу того, как именно возникла эта система, расходятся. Одна из гипотез, состоит в том, что произошло слияние двух племен, одно из которых пользовалось шестеричной системой счисления, я второе - десятичной.
Слайд 21
Шестидесятеричная система возникла как компромисс между этими двумя системами. Другая гипотеза состоит в том, что вавилоняне считали продолжительность года равной 360 суткам, что, естественно, связывалось с числом 60. однако это предположение тоже нельзя считать достаточно обоснованным: астрономические познания древних вавилонян были довольно значительны, поэтому следует думать, что погрешность, с которой они определяли продолжительность года, была значительно меньше, чем пять суток.
Слайд 22
Пятеричная система счисления Пятеричная система счисления была распространена у ряда африканских племен. Связь этой системы со строением человеческой руки - первоначальной "счетной машины" - достаточно очевидна. В Китае принято считать пятками, причем пятки группируются в пары; получается своеобразная система счисления, в которой каждая единица четного порядка в пять, а нечетного - в два раза больше предыдущей. Однако эта система счисления с двойным основанием, отражающая счет с помощью двух рук, довольно сложна. Гораздо чаще используется чистая пятеричная система, то есть позиционная система с основанием пять.
Слайд 23
Двадцатеричная система счисления Двадцатеричная система счисления была принята у ацтеков и майя -народов, населявших в течение многих столетий обширные области американского континента и создавших там высокую культуру, почти полностью уничтоженную испанскими завоевателями в XVI - XVII вв. Та же двадцатеричная система была принята и у кельтов, населявших Западную Европу, начиная со II в. до нашей эры.
Цветение вишни в лунную ночь
Композитор Алексей Рыбников
Вода может клеить?
Лесная сказка о том, как согреться холодной осенью
Привередница