НОУ
Вложение | Размер |
---|---|
administratsiya_goroda_nizhnego_novgorod1.doc | 244 КБ |
АДМИНИСТРАЦИЯ ГОРОДА НИЖНЕГО НОВГОРОДА
ДЕПАРТАМЕНТ ОБРАЗОВАНИЯ
МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ЦЕНТР ОБРАЗОВАНИЯ МОСКОВСКОГО РАЙОНА
603079, Московское шоссе, 161, т. (факс) 279-03-11
Научное общество учащихся
Нанотехнологии и их применение
Выполнила: Курникова Мария,
ученица 10 «А» класса
Научный руководитель:
Климкова Татьяна Юрьевна
учитель физики
Нижний Новгород
2013 год
Содержание
Стр.
Введение……………………………………………………………………….3
Глава 1. Понятие и развитие нанотехнологий………………………………5
1.1. Понятие нанотехнологий……………………………………………...5
1.2. История развития нанотехнологий…………………………………...8
1.3. Современный уровень развития нанотехнологий…………………..11
Глава 2. Применение нанотехнологий в различных отраслях…………….12
2.1. Наноэлектроника и нанофотоника……………………………………..13
2.2. Наноэнергетика………………………………………………………….14
2.3. Наномедицина…………………………………………………………...16
2.4. Нанобиотехнологии……………………………………………………..18
2.5. Нанокосметика…………………………………………………………..19
2.6. Нанотехнологии для легкой промышленности………………………..21
2.7. Нанотехнологии для обеспечения безопасности……………………...24
2.8. Нанотехнологии для сельского хозяйства и пищевой промышленности………………………………………………………………..26
Заключение…………………………………………………………………..27
Cписок использованных источников………………………………………28
Введение
В своей научной работе мы решили рассмотреть такую тему, как нанотехнологии и их применение. Выбранная тема не случайна: мы считаем, что проблема развития и внедрения нанотехнологий в производственный процесс различных отраслей хозяйства России является сейчас очень важной и актуальной.
За последние несколько лет короткое слово с большим потенциалом - «нано» быстро вошло в мировое сознание. Существует множество слухов и ошибочных мнений относительно нанотехнологии. «Нано»- это не только крошечные роботы, которые могут (или не могут) завоевать мир. По сути, это огромный шаг в науке.
Нанотехнология сейчас находится в начальной стадии развития, поскольку основные открытия, предсказываемые в этой области, пока не сделаны. Тем не менее, проводимые исследования уже дают практические результаты. Использование в нанотехнологии передовых научных результатов позволяет относить её к высоким технологиям.
Нанотехнология — следующий логический шаг развития электроники и других наукоёмких производств.
Цель научной работы заключается в комплексной характеристике нанотехнологий, с учетом специфики и всех особенностей данной области прикладной науки.
Объектом настоящего исследования является нанотехнология как область науки и техники, а предметом – особенности применения нанотехнологии в машиностроении.
К основным задачам работы относятся:
1. Определение понятия «нанотехнология».
2. Рассмотрение истории развития нанотехнологии в мире вообще и в России в частности.
3. Выяснение прикладного аспекта нанотехнологий, то есть особенностей применения в различных отраслях.
4. Анализ возможностей, способов и методов применения нанотехнологий в машиностроении (в мире и в России).
5. Выделение технологических особенностей применения нанотехнологий.
6. Указание и прогнозирование перспектив развития нанотехнологий в России.
В соответствии с поставленными задачами находится и структура научной работы. Материал изложен в двух основных главах:
Первая глава носит теоретический характер – то есть в целом знакомит с нанотехнологией: понятие, история развития, возможности применения.
Вторая глава посвящена вопросу применения нанотехнологий: значение, технологические особенности, приводится прогноз развития и выяснение перспектив нанотехнологий в России.
При подготовке работы для сбора необходимого материала (данных) были использованы различные информационные источники, но в основном это - экономические и научно-технические журналы, газеты, а также ресурсы сети Интернет.
В силу того, что нанотехнологии – сравнительная молодая область прикладной науки, учебной литературы по теме очень мало. Поэтому основной источник – материалы периодической печати и ресурсы глобальной информационной сети Интернет.
Глава 1. Понятие и развитие нанотехнологий
1.1. Понятие нанотехнологий
Любой материальный предмет - это всего лишь скопление атомов в пространстве. То, как эти атомы собраны в структуру, определяет, что это будет за предмет.
С. Лем
Английский термин «Nanotechnology» был предложен японским профессором Норио Танигучи в средине 70-х гг. прошлого века и использован в докладе «Об основных принципах нанотехнологии» (On the Basic Concept of Nanotechnology) на международной конференции в 1974 г., т. е. задолго до начала масштабных работ в этой области [4, С. 10-17]. По своему смыслу он заметно шире буквального русского перевода «нанотехнология», поскольку подразумевает большую совокупность знаний, подходов, приемов, конкретных процедур и их материализованные результаты – нанопродукцию.
Нанотехнология совокупность методов и приемов, обеспечивающих возможность контролируемым образом создавать и модифицировать объекты, включающие компоненты с размерами менее 100 нм, имеющие принципиально новые качества и позволяющие осуществлять их интеграцию в полноценно функционирующие системы большего масштаба. Данная технология подразумевает умение работать с такими объектами и создавать из них более крупные структуры, обладающие принципиально новой молекулярной организацией. В связи с этим возникли понятия нанонауки, нанотехнологии и наноинженериии (нанонаука занимается фундаментальными исследованиями свойств наноматериалов и явлений в нанометровом масштабе, нанотехнология – созданием наноструктур, наноинженерия – поиском эффективных методов их использования) (см. рис. 1).
Рисунок 1. Научные основы и объекты нанонауки и нанотехнологии [2, С.33]
Наноматериалы материалы, содержащие структурные элементы, геометрические размеры которых хотя бы в одном измерении не превышают 100 нм, и обладающие качественно новыми свойствами, функциональными и эксплуатационными характеристиками;
Когда речь идет о развитии нанотехнологий, имеются в виду три направления:
· изготовление электронных схем (в том числе и объемных) с активными элементами, размерами сравнимыми с размерами молекул и атомов;
· разработка и изготовление наномашин, т.е. механизмов и роботов размером с молекулу;
· непосредственная манипуляция атомами и молекулами и сборка из них всего существующего.
Сегодня львиная доля производственных затрат человека идут, как это ни парадоксально, на производство отходов и загрязнение окружающей среды. Если же мы будем целенаправленно создавать необходимые нам материальные объекты, конструируя их из атомов и молекул, с помощью нанотехнологий, это приведет радикальному снижению материальных и энергетических затрат общества в целом.
Таким образом, нанотехнологии - это, во-первых, технологии атомарного конструирования, во-вторых, - принципиальный вызов существующей системе организации научных исследований, и, в-третьих, - философское понятие, возвращающее нас к целостному восприятию мира на новом уровне знаний.
1.2. История развития нанотехнологии
Отцом нанотехнологии можно считать греческого философа Демокрита. Примерно в 400 г. до н.э. он впервые использовал слово «атом», что в переводе с греческого означает «нераскалываемый», для описания самой малой частицы вещества.
Примером первого использования нанотехнологий можно назвать – изобретение в 1883 году фотопленки Джорджем Истмэном, который впоследствии основал известную компанию Kodak.
1932 г. Голландский профессор Фриц Цернике, Нобелевский лауреат 1953 г., изобрел фазово-контрастный микроскоп - вариант оптического микроскопа, улучшавший качество показа деталей изображения, и исследовал с его помощью живые клетки (ранее для этого приходилось применять красители, убивавшие живые ткани).
1939 г. Компания Siemens, в которой работал Руска, выпустила первый коммерческий электронный микроскоп с разрешающей способностью 10 нм.
Днем рождения нанотехнологий считается 29 декабря 1959 г. Профессор Калифорнийского технологического института Ричард Фейман выступил с лекцией на ежегодной встрече Американского физического общества в Калифорнийском технологическом институте. В этом докладе, названном «На дне много места», он выразил идею «управления и контроля материалов на микроскопическом уровне», подчеркивая, что речь идет не только о миниатюризации, но и о таких возможностях, как размещение всей Британской Энциклопедии на кончике булавки. По мнению Ричарда, достигнуть этого можно уменьшая обычные размеры в 25 000 раз без потери разрешения. Он предполагал, что используя подобные технологии, можно уместить все мировое собрание книг в одну брошюру. «Такое возможно, — сказал Фейман, — в силу сохранения объектами свойства размерности, несмотря на то, что речь идет об атомном уровне».
1966 г. Американский физик Рассел Янг, работавший в Национальном бюро стандартов, придумал пьезодвигатель, применяемый сегодня в сканирующих туннельных микроскопах и для позиционирования наноинструментов с точностью до 0,01 ангстрем (1 нм = 10 A°).
1968 г. Исполнительный вице-президент компании Bell Альфред Чо и сотрудник ее отделения по исследованиям полупроводников Джон Артур обосновали теоретическую возможность использования нанотехнологий в решении задач обработки поверхностей и достижения атомной точности при создании электронных приборов.
1982 г. В Цюрихском исследовательском центре IBM физики Герд Бинниг и Генрих Рорер (Нобелевские лауреаты 1986 г. вместе с Эрнстом Руской) создали сканирующий туннельный микроскоп (СТМ), позволяющий строить трехмерную картину расположения атомов на поверхностях проводящих материалов.
1985 г. Трое американских химиков: профессор Райсского университета Ричард Смэлли, а также Роберт Карл и Хэрольд Крото (Нобелевские лауреаты 1996 г.) открыли фуллерены - молекулы, состоящие из 60 атомов углерода, расположенных в форме сферы. Эти ученые также впервые сумели измерить объект размером 1 нм.
1986 г. Герд Бинниг разработал сканирующий атомно-силовой зондовый микроскоп, позволивший наконец визуализировать атомы любых материалов (не только проводящих), а также манипулировать ими.
1989 г. Ученые Дональд Эйглер и Эрхард Швецер из Калифорнийского научного центра IBM сумели выложить 35 атомами ксенона на кристалле никеля название своей компании.
1991 г. Японский профессор Сумио Лиджима, работавший в компании NEC, использовал фуллерены для создания углеродных трубок (или нанотрубок) диаметром 0,8 нм. На их основе в наше время выпускаются материалы в сто раз прочнее стали.
1991 г. В США заработала первая нанотехнологическая программа Национального научного фонда. Аналогичной деятельностью озаботилось и правительство Японии. А вот в Европе серьезная поддержка таких исследований на государственном уровне началась только с 1997 г.
1997 г. Эрик Дрекслер объявил, что к 2020 г. станет возможной промышленная сборка наноустройств из отдельных атомов. До сего времени почти все его прогнозы сбывались с опережением.
1999 г. Американские ученые - профессор физики Марк Рид (Йельский университет) и профессор химии Джеймс Тур (Райсский университет) - разработали единые принципы манипуляции как одной молекулой, так и их цепочкой.
2000 г. Немецкий физик Франц Гиссибл разглядел в кремнии субатомные частицы.
2001 г. Реальное финансирование NNI превысило запланированное (422 млн. долл.) на 42 млн.
2002 г. Сиз Деккер соединил углеродную трубку с ДНК, получив единый наномеханизм. Финансирование NNI составило 697 млн. долл. (на 97 млн. больше плана).
2003 г. Профессор Фенг Лью из университета Юты, используя наработки Франца Гиссибла, с помощью атомного микроскопа построил образы орбит электронов путем анализа их возмущения при движении вокруг ядра.
1.3 Современный уровень развития нанотехнологий
В настоящее время наноматериалы используют для изготовления защитных и светопоглощающих покрытий, спортивного оборудования, транзисторов, светоиспускающих диодов, топливных элементов, лекарств и медицинской аппаратуры, материалов для упаковки продуктов питания, косметики и одежды. Нанопримеси на основе оксида церия уже сейчас добавляют в дизельное топливо, что позволяет на 4-5% повысить КПД двигателя и снизить степень загрязнения выхлопных газов[3, С. 51-55].
Общемировые затраты на нанотехнологические проекты превышают $9 млрд. в год. На долю США приходится примерно треть всех мировых инвестиций в нанотехнологии. Другие главные игроки на этом поле - Европейский Союз и Япония. Исследования в этой сфере активно ведутся также в странах бывшего СССР, Австралии, Канаде, Китае, Южной Корее, Израиле, Сингапуре, Бразилии и Тайване. Прогнозы показывают, что к 2015 году общая численность персонала различных отраслей нанотехнологической промышленности может дойти до 2 млн. человек, а суммарная стоимость товаров, производимых с использованием наноматериалов, составит, как минимум, несколько сотен миллиардов долларов и, возможно, приблизится к $1 трлн. В общей сложности американская промышленность и индустрия других развитых стран сейчас применяют нанотехнологии в процессе производства, как минимум, 80 групп потребительских товаров и свыше 600 видов сырьевых материалов, комплектующих изделий и промышленного оборудования.
Глава 2. Применение нанотехнологий.
2.1. Наноэлектроника и нанофотоника
Существуют следующие основные направления наноэлектроники:
1. Кремниевая электроника.
2. Электроника на механотранзисторах.
3. Электроника на нанотрубках.
4. Молекулярная электроника.
5. Одноэлектроника.
6. Спинтроника.
7. Квантовая электроника.
8. Многозондовые системы.
9. Гибкая электроника.
Электроника на механотранзисторах. По своим размерам современные транзисторы могут быть всего в несколько раз больше молекулы. Однако даже эти компоненты намного больше, чем новое поколение наноэлементов, в которых вместо кремния будут использоваться органические соединения и углеродные нанотрубки. Нанотехнологии позволят не только уменьшить размеры микросхем, но и увеличить количество транзисторов в них, что значительно повысит производительность[9, С. 3-13].
Электроника на нанотрубках. Размеры углеродных нанотрубок сопоставимы с размерами молекул. Средний диаметр однослойной углеродной нанотрубки составляет около 1 нанометра. Если же удастся «заставить» одну нанотрубку хранить один бит информации, то память на их основе будет хранить колоссальные объемы информации, ведь современные ячейки flash-памяти, хранящие один бит информации, имеют размеры от 50 до 90 нанометров.
Одной из перспективнейших отраслей применения нанотехнологий является компьютерная техника. Несмотря на значительную миниатюризацию и оптимизацию современных устройств, имеющихся на рынке, нанотехнологии смогут совершить в этой сфере настоящую революцию. В этом случаи размеры действующих элементов микропроцессоров и устройств памяти приближаются к квантовым пределам, то есть границам мельчайших единиц материи и энергии - когда работает один электрон, один спин, квант магнитного потока, энергии и т.д. Это сулит быстродействие порядка ТГц (~1012 операций в секунду), плотность записи информации ~103 Тбит/см2, что намного порядков выше, чем достигнутые сегодня, а энергопотребление - на несколько порядков ниже. При такой плотности записи в жестком диске - размерами с наручные часы - можно было бы разместить громадную библиотеку национального масштаба или фотографии, отпечатки пальцев, медицинские карты и биографии всех жителей Земли.
Нанофотоника. Компании, занимающиеся нанофотоникой, разрабатывают высокоинтегрированные компоненты оптических коммуникаций с применением технологий нанооптики и нанопроизводства. Такой подход к изготовлению оптических компонентов позволяет ускорить получение их прототипов, улучшить технические характеристики, уменьшить размеры и снизить стоимость.
2.2. Наноэнергетика
Наоэнергетика включает в себя[14]:
1. Энергетические системы
2. Генерация энергии: солнечные батареи, термоэлектрические элементы, микрожидкостные генераторы, ядерные установки, термоядерные установки, батарейки и аккумуляторы.
3. Топливные элементы: водородные элементы, передача энергии (высокотемпературные сверхпроводники, формирование градиента температур)
Солнечные батареи. Солнечную батарею толщиной в бумажный лист, которую можно гнуть и сворачивать, создала японская электротехническая компания Sharp. Как сообщает сегодня токийская печать, батарея в виде пленки имеет толщину от 1 до 3 микрометров - то есть, от одной до трех тысячных миллиметра. Это меньше современных аналогов примерно в сто раз. Компания собирается начать промышленное производство новики уже в этом году. Слоями солнечных батарей планируется покрывать мобильные телефоны, автомобили и даже специальную одежду. Пленка площадью в две визитные карточки весит всего один грамм и обладает мощностью в 2,6 ватт. По словам разработчиков, этого уже достаточно, чтобы обеспечить электропитанием велосипедный фонарь.
Батарейки и аккумуляторы. Компания Toshiba разработала литиево-ионную батарею на основе наноматериалов, которая заряжается примерно в 60 раз быстрее обычной. За одну минуту её можно заправить на 80%, а полная ёмкость аккумулятора (у первого образца она была равна 600 миллиампер-часов) заполняется через несколько минут (см. рис. 2).
Рисунок 2. Нанобатарейка (3,8х62х35 мм)
Создать нанобатрейку удалось благодаря новой технологии, основанной на использовании наночастиц, находящихся в составе материала отрицательного электрода батареи. При зарядке батареи, наночастицы быстро собирают и хранят ионы лития. На рынке скоростная батарейка появилась в 2006 году.
2.3. Наномедицина
Современная технология – нанотехнология - позволяет работать с веществом в масштабах, еще недавно казавшихся фантастическими - микрометровых, и даже нанометровых. Именно такие размеры характерны для основных биологических структур - клеток, их составных частей (органелл) и молекул.
Современные приложения нанотехнологий в медицине можно разделить на несколько групп[10, С.212-247]:
1. Наноструктурированные материалы, в т. ч., поверхности с нанорельефом, мембраны с наноотверстиями. В настоящее время достигнуты успехи в изготовлении наноматериала, имитирующего естественную костную ткань.
2. Наночастицы (в т. ч., фуллерены и дендримеры). Спектр возможных применений чрезвычайно широк. Он включает борьбу с вирусными заболеваниями такими, как грипп и ВИЧ, онкологическими и нейродегенеративными заболеваниями, остеопорозом, заболеваниями сосудов. Наносферы могут использоваться и в диагностике, например, как рентгеноконтрастное вещество, прикрепляющееся к поверхности определённых клеток и показывающее их расположение в организме.
3. Микро- и нанокапсулы. Миниатюрные (~1 мк) капсулы с нанопорами могут быть использованы для доставки лекарственных средств в нужное место организма. Уже испытываются подобные микрокапсулы для доставки и физиологически регулируемого выделения инсулина при диабете 1-го типа.
4. Нанотехнологические сенсоры и анализаторы. Использование микро- и нанотехнологий позволяет многократно повысить возможности по обнаружению и анализу сверхмалых количеств различных веществ. Одним из вариантов такого рода устройства является «лаборатория на чипе» (lab on a chip). Это пластинка, на поверхности которой упорядоченно размещены рецепторы к нужным веществам, например, антитела. Такое устройство, способное обнаруживать буквально отдельные молекулы может быть использовано при определении последовательности оснований ДНК или аминокислот, обнаружения возбудителей инфекционных заболеваний, токсических веществ.
5. Медицинские применения сканирующих зондовых микроскопов. Сканирующие микроскопы представляют собой группу уникальных по своим возможностям приборов. Они позволяют достигать увеличения достаточного, чтобы рассмотреть отдельные молекулы и атомы.
6. Наноинструменты и наноманипуляторы. Наноманипуляторами можно назвать устройства, предназначенные для манипуляций с нанообъектами - наночастицами, молекулами и отдельными атомами. Примером могут служить сканирующие зондовые микроскопы, которые позволяют перемещать любые объекты вплоть до атомов.
7. Микро- и наноустройства различной степени автономности. В настоящее время всё большее распространение получают миниатюрные устройства, которые могут быть помещены внутрь организма для диагностических, а возможно, и лечебных целей. Современное устройство, предназначенное для исследования желудочно-кишечного тракта, имеет размер несколько миллиметров, несёт на борту миниатюрную видеокамеру и систему освещения. Полученные кадры передаются наружу.
2.4. Нанобиотехнологии
Особое место в нанотехнологиях занимает область нанобиотехнологий. Речь идет о создании устройств с использованием биологических макромолекул в целях изучения или управления биологическими системами[1, С.58-73].
Нанобиотехнология объединяет достижения нанотехнологии и молекулярной биологии. В ней широко используется способность биомолекул к самосборке в наноструктуры. Так, например, липиды способны спонтанно объединяться и формировать жидкие кристаллы. ДНК используется не только для создания наноструктур, но и в качестве важного компонента наномеханизмов. Предполагается, например, что вместо того, чтобы создавать кремниевую основу микросхем, нанотехнологи смогут использовать двухцепочечную молекулу ДНК, особенности которой позволяют объединять атомы в предсказуемой последовательности.
По мнению ряда ученых, нанобиотехнологии существенно упрощают и ускоряют решение традиционных проблем генетики сельскохозяйственных видов. Таких, к примеру, как контроль происхождения, выявление носителей неблагоприятных мутаций или инфекций, а также генов, связанных с желательными хозяйственно ценными признаками, включая устойчивость к неблагоприятным факторам окружающей среды.
2.5. Нанокосметика
Использование нанотехнологий в косметике началось сравнительно недавно[18].
L'Oreal, мировой лидер по производству косметики, вкладывает миллионы в исследования нанотехнологии. Компания верит в то, что будущее именно за нанокосметикой — когда-нибудь она поможет замедлить старение кожи, предотвратить появление седых волос и даже облысение.
Несколько лет назад L'Oreal выпустила на рынок знаменитый крем Revitalift, содержащий наносомы Про-Ретинола А, и, по заверению компании, этот крем впитывается в кожу куда лучше, чем кремы других марок, за счет особых микрочастиц (см. рис. 3).Традиционные кремы лишь образовывали барьер, защищающий кожу от потери влаги, тогда как лореалевская новинка с помощью микрочастиц действовала на более глубокие слои кожи и стимулировала обновление клеток.
Рисунок 3. Крем компании L'Oreal[18]
Dior «выступил» на рынок с «липосомами», которые по своей функции похожи на лореалевские «наносомы». Estee и Johnson & Johnson также стали производить продукцию с использованием нанотехнологий.
Большинство обычных кремов из числа так называемой «поверхностной косметики» не достигают глубоких слоев кожи, оставаясь на поверхности. Такие кремы могут хорошо защищать кожу и не более того. Нанокосметика действует на уровне атомов, доставляя увлажняющие компоненты и антиоксиданты в так называемых «наносферах» или «наносомах» — маленьких капельках, которые в миллионы раз меньше частицы песка. В теории, эти наносомы проникают очень глубоко в кожу, принося с собой увлажняющие компоненты и удаляя мертвые клетки глубоко под поверхностным слоем кожи.
Однако косметологи не остановились на наносомах и предложили потребителям так называемые «нанокомплексы», объединяющие активные вещества, измельченные до размера «нано», в системы. Нанокомплексы могут быть заранее «запрограммированы» под определенную проблему и высвобождать активные вещества именно там, где это необходимо.
У бренда лечебной косметики для волос Kerastase, принадлежащего компании L’Oreal, есть несколько продуктов для волос, созданных с использованием нанотехнологий.
Нанотехнологии используются не только при производстве увлажняющих кремов, но и солнцезащитных средств. Оказывается, солнцезащитный крем может быть практически неощутимым, но, в то же время, способным защитить от вредного солнечного излучения на самом высоком уровне.
2.6. Нанотехнологии для легкой промышленности
Наноматериалы в текстиле. Текстиль на основе наноматериалов приобретает уникальные по своим показателям водонепроницаемость, грязеотталкивание, теплопроводность, способность проводить электричество и другие свойства[19].
Наноматериалы могут иметь в своем составе наночастицы, нановолокна и другие добавки. Например, компания Nano-Tex успешно производит ткани, улучшенные с помощью нанотехнологий. Одна из таких тканей обеспечивает абсолютную водонепроницаемость: благодаря изменению молекулярной структуры волокон, капли воды полностью скатываются с полотна, которое при этом «дышит».
А американская компания NanoSoni cразработала уникальную технологию, позволяющую создавать материалы с невозможными в природе свойствами, в частности, листы полимера, гибкие и упругие, как резина, и проводящие ток, как металл. Новый продукт назвали Metall Rubber- металлизированная резина.
Из «горячих новинок» текстильного нанорынка следует отметить утеплительный материал Aspen's Pyrogel AR5401, изготовленный на основе полимерного материала с нанопорами. Благодаря им материал ведет себя как хороший теплоизолятор. Компания Aspen Aerogels в марте 2004 г. начала производство из нового материала утепляющих стелек для обуви. Эти стельки заказывали: команда, выигравшая в 2004 г. марафон к Северному полюсу, одна из канадских лыжных команд и элитное спецподразделение армии США. Отзывы заказчиков о продукте были схожими: это универсальное решение для работы в экстремальных условиях. Нанопокрытия. Нанотехнологии также применяются для улучшения свойств традиционного текстиля и изделий из него. В этом случае на текстиль наносятся покрытия, модифицирующие его в микронном и субмикронном размерных диапазонах. Энергосберегающая технология фотокатализа очищает поверхность текстиля без применения химикатов и энергии, исключительно под воздействием нанокатализаторов, нанесенных с использованием традиционного текстильного оборудования, солнечного света и воды. Гонконгские ученые создали покрытие на основе наночастиц, которое предотвращает загрязнение ткани, а также способствует ее обеззараживанию. Некоторые нанопокрытия доступны и на российском рынке. Это обеззараживающие покрытия на основе наночастиц серебра и оксида цинка а также покрытия, создающие устойчивый слой, который не пропускает ультрафиолет. Электроника и микроэлектромеханические системы (МЭМС). Интеграция в текстиль микро- и наноэлектроники, а также МЭМС существенно расширяет возможности повседневной одежды, которую можно использовать в качестве средства связи и даже персонального компьютера. А изготовление текстиля со встроенными датчиками позволит производить мониторинг состояния тела человека. Это, безусловно, откроет новые возможности в медицинской практике, спорте и жизнеобеспечении в экстремальных условиях (см. рис. 4).
Рисунок 4. «Умная» одежда с использованием нанотехнологий[19]
Исследователи из университета штата Аризона под руководством профессора Фредерика Ценгаусерна пытаются создать биометрическую одежду, интегрировав в обычное трико, которым часто пользуются спортсмены, гибкий дисплей, набор сенсоров для детекции вредных веществ, микроскопический топливный элемент, микронасосы и т.д. Не удивительно, что такой «навороченный» костюм предназначается для военного применения, но может использоваться и в мирных отраслях, например, в медицине, где он сам проверит состояние больного (например, диабетика) и сам вовремя сделает необходимые инъекции.
Что касается России, то сегодня более 90% швейных предприятий страны применяют разработанные институтом технологии изготовления одежды. Но не один только ЦНИИШП занимается внедрением нанотехнологий в лёгкую промышленность. В России существует Центральный научно-исследовательский институт хлопчатобумажной промышленности (ЦНИИХБП), институт пластмасс, учебные и текстильные институты.
2.7. Нанотехнологии для обеспечения безопасности
Современные достижения в области наноматериалов и нанотехнологий открывают новые возможности для повышения в десятки раз тактико-технических характеристик систем безопасности и являются по своей сути инновационными, поскольку направлены на создание, главным образом, новой продукции, востребованной рынком систем безопасности. В ближайшие 3–10 лет наиболее перспективны следующие направления использования нанотехнологий в системах безопасности[15]:
1. Новые средства и методы контроля и защиты документов от подделки, например на основе наноматериалов, микропечати, тонких электронных схем, бумаги с добавлением наночастиц, компактных устройств считывания данных.
2. Системы контроля доступа в помещения на основе наносенсоров, например считыватели отпечатков пальца, теплового рисунка вен руки или головы, геометрической формы руки в динамике.
3. Многофункциональные сенсоры «электронный нос» для обнаружения и идентификации сверхмалых количеств взрывчатых, наркотических и опасных веществ.
4. Более компактные, чуткие и информативные портативные и стационарные металлоискатели и детекторы движения на основе наносенсоров.
5. Распределенные массивы наносенсоров типа «умная пыль» для охраны границ и периметров объектов.
6. Магниторезонансные установки для точного анализа объемного содержания закрытых емкостей и грузов в аэропортах, на проходных, на таможне.
Примеры создания перспективных технических средств и систем безопасности на базе нанотехнологий и наноматериалов, имеющие высокую степень завершенности исследований:
1. Антитеррористические средства, в т.ч. гиперспектральные наноанализаторы сверхнизких концентраций взрывчатых, наркотических и других запрещенных к распространению веществ.
2. Системы контроля и управления доступа, паспортного и миграционного контроля, в т.ч.:
- идентификационные документы и системы контроля и управления доступа на базе нанометок и нанопамяти, включая системы для идентификации лиц на основе получения, записи на защищенный носитель (нанопамять) и цифровой обработки трехмерного видеоизображения;
- замковые устройства для режимных помещений с уникальными электронными ключами – нанометками;
- электронные заграничные паспорта второго поколения и миграционные удостоверения с нанопамятью 1–10 Гбайт.
В настоящее время в нашей стране сформированы кооперации соисполнителей, способные в кратчайшие сроки реализовать проекты по созданию перспективных систем безопасности. Дело за инвестированием инновационных проектов. И здесь роль государства, как никогда, велика.
2.8. Нанотехнологии для сельского хозяйства и пищевой промышленности
Направления использования нанотехнологий в сельском хозяйстве связаны с воспроизводством сельскохозяйственных видов, переработкой конечной продукции и улучшением ее качества. Нанотехнологии уже используют для обеззараживания воздуха и различных материалов, в том числе кормов и конечной продукции животноводства; обработки семян и урожая в целях его сохранения. Их применяют при стимуляции роста растений; лечении животных; улучшении качества кормов[21]. Есть опыт внедрения этих технологий для уменьшения энергоемкости производства, оптимизации методов обработки сырья и увеличения выхода конечной продукции; разработки новых упаковочных материалов, позволяющих долго сохранять конечную продукцию.
Под эгидой ФАО создана база данных о 160 проектах использования нанотехнологий в сельском хозяйстве, которые финансировались и разрабатывались на 2006 г. Большинство из них связано с пищевой промышленностью, с использованием наноматериалов для упаковки пищи или определения и, в отдельных случаях, нейтрализации опасных токсинов, аллергенов или патогенов. Развиваются проекты по созданию и улучшению пищевых добавок, получению растительного масла с нанодобавками, которые препятствуют поступлению холестерина в кровь млекопитающих.
Таким образом, преимущества и возможности использование нанотехнологий и наноматериалов очевидны. Поэтому вполне объясним повышенный интерес к этой теме в современном мире, т.к. она является источником новых подходов к повышению качества жизни и решению многих социальных проблем в высокоиндустриальном обществе.
Заключение
Ключевые технологии и материалы всегда играли большую роль в истории цивилизации, выполняя не только узко производственные функции, но и социальные. Достаточно вспомнить, как сильно отличались каменный и бронзовый века, век пара и век электричества, атомной энергии и компьютеров. По мнению многих экспертов, XXI в. будет веком нанонауки и нанотехнологий, которые и определят его лицо. Воздействие нанотехнологий на жизнь обещает иметь всеобщий характер, изменить экономику и затронуть все стороны быта, работы, социальных отношений. С помощью нанотехнологий мы сможем экономить время, получать больше благ за меньшую цену, постоянно повышать уровень и качество жизни.
Главная надежда нанотехнологий связана с тем, что удастся двигаться не «сверху вниз», а «снизу вверх», т.е. выращивать наноструктуры, наноматериалы, нанообъекты. Нанотехнологии требуют больших объемов материалов и собирать их атом за атомом невозможно. Поэтому есть два основных ключа к нанотехнологиям:
1. Нужно организовать процессы так, чтобы наноструктуры собирались сами, образуя то, чего бы нам хотелось. Другими словами, это процессы самоорганизации, самоформирования и самосборки.
2. Решение многих проблем нанотехнологий требует совместной деятельности физиков, химиков, математиков, биологов — общего языка, понятий и моделей — междисциплинарного подхода. Кроме того, именно широкий междисциплинарный взгляд дает понимание того, чего в принципе возможно достичь, чего хотелось бы достичь и — главное — чего хотелось бы избежать. Здесь первостепенное значение приобретает проектирование будущего, в котором технологические, экономические, политические, военные и социальные проблемы оказываются значительно более взаимосвязаны, чем ныне. Это обусловлено совершенно новыми технологическими возможностями.
В самом деле, чтобы нанотехнологии не остались научной фантастикой, они должны найти свое место в экономике, включиться в существующие экономические циклы или создать новые. Это требует активного мониторинга и сопровождения на всех этапах от лаборатории до рынка. Это качественно новый уровень управления, позволяющий решать организационно-экономические проблемы невиданного уровня сложности.
В развитых странах осознание ключевой роли, которую уже в недалеком будущем будут играть результаты работ по нанотехнологиям, привело к разработке широкомасштабных программ по их развитию и государственной поддержке.
Из числа технологически продвинутых стран Россия - единственная - до настоящего времени не имеет программы развития нанотехнологий федерального масштаба. Исследования в этом направлении проводятся в рамках академических институтов, частично вузов, входят отдельными разделами в отраслевые программы, но, как правило, не завершаются практическим внедрением результатов. Более того, даже осуществить зарубежное патентование отечественных изобретений, как правило, не удается, так как государство в этом не заинтересовано и никакой финансовой поддержки авторам изобретений не оказывает. Растворение проблематики нанотехнологий в отдельных разделах федеральных и отраслевых программ не позволяет даже оценить, сколько средств выделяется государством на их развитие. По существующим оптимистическим оценкам - несколько десятков миллионов долларов США. При этом сотни высококлассных российских специалистов, которые могли бы составить цвет отечественной нанотехнологии, вынуждены работать за рубежом. Отсутствие Федеральной программы, четкой целевой установки на промышленное внедрение разработок, неготовность отраслей к восприятию достижений нанотехнологии, убогость финансирования - все это является следствием отсутствия государственной политики в этом стратегически важном направлении.
Список использованных источников:
Литературные источники
1. Глинк Б., Пастернак Дж. Молекулярная биотехнология. Принципы и применение: Пер. с англ. М.: Мир, 2002. С. 58-73.
2. Головин Ю.И. Введение в нанотехнику. М., 2006. С.32-45
3. Гусев А.И. Наноматериалы, наноструктуры, нанотехнологии. М., 2005.С. 51-55, 78-91.
4. Кобаяси Н. Введение в нанотехнологию. М., 2005. С. 10-17
5. Нанотехнологии. Ч. Пул, Ф. Оуэнс. Пер. с англ. - Москва: Техносфера, 2005. С.7-20.
6. Нанотехнология в ближайшем десятилетии. Прогноз направления развития // Под ред. М.К.Роко, Р.С.Уильямса и П.Аливисатоса: Пер. с англ. М.: Мир, 2002. С. 54-63.
7. Структура и свойства нанокристаллических материалов. Под ред. Г.Г. Талуда и Н.Н. Носковой. Екатеринбург: Изд-воУрО РАН, 1999. - С.123-140 .
8. Суздалев И.П. Нанотехнология: физико-химия нанокластеров, наноструктур и наноматериалов. М., 2006.
Периодическая печать:
9. Алферов Ж.И., Асеев А.Л., Гапонов С.В., Копьев П.С, Панов В.И., Полторацкий Э.А., Сибельдин Н.Н., Сурис Р.А. Наноматериалы и нанотехнологий // Микросистемная техника. 2003. №8. С. 3-13.
10. Артюхов И.В., Кеменов В.Н., Нестеров С.Б.. Биомедицинские технологии. Обзор состояния и направления работы. Материалы 9-й научно-технической конференции «Вакуумная наука и техника»-М.: МИЭМ, 2002, с. 244-247
11. Нестеров C.Б.. Нанотехнология. Современное состояние и перспективы. «Новые информационные технологии». Тезисы докладов XII Международной студенческой школы-семинара-М.: МГИЭМ, 2004, 421 с., с.21-22.
12. Основы политики Российской Федерации в области науки и технологий на период до 2010 года и дальнейшую перспективу // Поиск. 2002. № 16 (19 апреля).
Материалы с сайтов сети Интернет
13. http:// www.nanonewsnet.ru
14. http:// www.nanotube.ru
15. http:// www.nanorf.ru
16. http:// www.nanoware.ru
17. http:// www.pronano.ru
18. http://www.passion.ru
19. http://www.ifmachines.com
20. http://www.rosbaltvolga.ru
21. http:// www.chemworld.narod.ru
22. http://www.navy.ru
Астрономический календарь. Май, 2019
Золотая хохлома
Как нарисовать черёмуху
Осенняя паутина
Лиса Лариска и белка Ленка