Презентация "Число Пи"
Вложение | Размер |
---|---|
chislo_p.pptx | 677.58 КБ |
Слайд 1
Число ‘ П ’ π ≈ 3,141 592 653 589 793 238 462 643 383 279 502 884 197 169 399 375Слайд 2
Впервые обозначением этого числа греческой буквой воспользовался британский математик Джонс в 1706 году, а общепринятым оно стало после работ Леонарда Эйлера в 1737 году. Это обозначение происходит от начальной буквы греческих слов περιφέρεια — окружность, периферия и περίμετρος — периметр Если принять диаметр окружности за единицу, то длина окружности — это число «пи».
Слайд 3
История числа "пи" История числа «Пи», выражающего отношение длины окружности к её диаметру, началась в Древнем Египте. Площадь круга диаметром d египетские математики определяли как ( d-d /9) 2 (эта запись дана здесь в современных символах). Из приведенного выражения можно заключить, что в то время число p считали равным дроби (16/9) 2 , или 256/81 , т.е. p = 3,160...
Слайд 4
В священной книге джайнизма (одной из древнейших религий, существовавших в Индии и возникшей в VI в. до н.э.) имеется указание, из которого следует, что число p в то время принимали равным , что даёт дробь 3,162...
Слайд 5
Древние греки Евдокс, Гиппократ и другие измерение окружности сводили к построению отрезка, а измерение круга - к построению равновеликого квадрата. Следует заметить, что на протяжении многих столетий математики разных стран и народов пытались выразить отношение длины окружности к диаметру рациональным числом .
Слайд 6
Архимед в III в. до н.э. обосновал в своей небольшой работе "Измерение круга" три положения: Всякий круг равновелик прямоугольному треугольнику, катеты которого соответственно равны длине окружности и её радиусу; Площади круга относятся к квадрату, построенному на диаметре, как 11 к 14 ; Отношение любой окружности к её диаметру меньше 3 1/7 и больше 3 10/71 .
Слайд 7
Последнее предложение Архимед обосновал последовательным вычислением периметров правильных вписанных и описанных многоугольников при удвоении числа их сторон. Сначала он удвоил число сторон правильных описанного и вписанного шестиугольников, затем двенадцатиугольников и т.д., доведя вычисления до периметров правильного вписанного и описанного многоугольников с 96 сторонами . По точным расчётам Архимеда отношение окружности к диаметру заключено между числами 3*10/71 и 3*1/7 , а это означает, что p = 3,1419... Истинное значение этого отношения 3,1415922653...
Слайд 8
В V в. до н.э. китайским математиком Цзу Чунчжи было найдено более точное значение этого числа: 3,1415927...
Слайд 9
Впервой половине XV в. обсерватории Улугбека , возле Самарканда , астроном и математик ал-Каши вычислил p с 16 десятичными знаками. Он сделал 27 удвоений числа сторон многоугольников и дошёл до многоугольника, имеющего 3*2 28 углов. Ал-Каши произвёл уникальные расчёты, которые были нужны для составления таблицы синусов с шагом в 1' . Эти таблицы сыграли важную роль в астрономии.
Слайд 10
Спустя полтора столетия в Европе Ф.Виет нашёл число p только с 9 правильными десятичными знаками, сделав 16 удвоений числа сторон многоугольников. Но при этом Ф.Виет первым заметил, что p можно отыскать, используя пределы некоторых рядов. Это открытие имело большое значение, так как позволило вычислить p с какой угодно точностью. Только через 250 лет после ал-Каши его результат был превзойдён.
Слайд 11
Первым ввёл обозначение отношения длины окружности к диаметру современным символом p английский математик У.Джонсон в 1706 г. В качестве символа он взял первую букву греческого слова "periferia" , что в переводе означает "окружность" . Введённое У.Джонсоном обозначение стало обшеупотребительным после опубликования работ Л.Эйлера , который воспользовался введённым символом впервые в 1736 г. В конце XVIII в. А.М.Лажандр на основе работ И.Г.Ламберта доказал, что число p иррационально.
Слайд 12
Затем немецкий математик Ф.Линдеман , опираясь на исследования Ш.Эрмита , нашёл строгое доказательство того, что это число не только иррационально, но и трансцендентно, т.е. не может быть корнем алгебраического уравнения. Из последнего следует, что с помощью только циркуля и линейки построить отрезок, равный по длине окружности, н е в о з м о ж н о , а следовательно, не существует решения задачи о квадратуре круга.
Слайд 13
К концу XIX в., после 20 лет упорного труда, англичанин Вильям Шенкс нашёл 707 знаков числа p. Однако в 1945 г. обнаружено с помощью ЭВМ, что Шенкс в своих вычислениях допустил ошибку в 520-м знаке и дальнейшие его вычисления оказались неверными.
Слайд 14
После разработки методов дифференциального и интегрального исчисления было найдено много формул, которые содержат число "пи". Некоторые из этих формул позволяют вычислить "пи" приёмами, отличными от метода Архимеда и более рациональными. Например, к числу "пи" можно прийти, отыскивая пределы некоторых рядов. Так, Г.Лейбниц (1646-1716) получил в 1674 г. ряд 1-1/3+1/5-1/7+1/9-1/11+... =p /4 ,
Слайд 15
Ещё более удобную формулу для вычисления p получил Дж. Мачин . Пользуясь этой формулой, он вычислил p (в 1706 г.) с точностью до 100 верных знаков. Хорошее приближение для "пи" даёт выражение p = 2 + 3 +
Слайд 16
Сегодня в мире отмечается один из самых необычных праздников – «День числа Пи». В американском написании сегодняшняя дата выглядит как 3.14, отсюда и объяснение, почему именно в этот день отмечается этот праздник. Как считают специалисты, это число было открыто вавилонскими магами . Оно использовалось при строительстве знаменитой Вавилонской башни. Однако недостаточно точное исчисление значения Пи привело к краху всего проекта. Возможно, что эта математическая константа лежала в основе строительства легендарного Храма царя Соломона. Знаменательно, что праздник числа Пи совпадает с днем рождения одного из наиболее выдающихся физиков современности - Альберта Эйнштейна.
Рисуем ананас акварелью
Пока бьют часы
Ребята и утята
Весенние чудеса
Астрономический календарь. Январь, 2019 год