Презентация может быть полезна преподавателям спецдисциплин при объяснении темы "Асинхронные машины"
Вложение | Размер |
---|---|
prezentatsiya_microsoft_office_powerpoint.pptx | 828.23 КБ |
Слайд 1
Асинхронные машиныСлайд 2
Содержание История. Стр. 3 Конструкция . Стр. 5 Принцип действия. Стр. 6 Типы ротора. Стр. 7 Режимы работы. Стр. 10 Схема замещения асинхронной машины. Стр. 15 Обмотка статора. Стр. 16
Слайд 3
История В 1888 г. Феррарис опубликовал свои исследования в статье для Королевской Академии Наук в Турине. Заслуга Феррариса в том, что сделав ошибочный вывод о небольшом к.п.д. асинхронного двигателя и о нецелесообразности применения систем переменного тока, он привлек внимание многих инженеров к проблеме совершенствования асинхронных машин. Уже в 1889 г. Доливо-Добровольский получил патент на трехфазный асинхронный двигатель с короткозамкнутым ротором типа «беличья клетка». Данные изобретения открыли эру массового индустриального применения электрических машин. В настоящее время асинхронный двигатель является самым распространенным электродвигателем.
Слайд 4
Конструкция Асинхронная машина имеет статор и ротор, разделённые воздушным зазором. Её активными частями являются обмотки и магнитопровод (сердечник); все остальные части — конструктивные, обеспечивающие необходимую прочность, жёсткость, охлаждение, возможность вращения и т. п.
Слайд 5
Принцип действия На обмотку статора подаётся переменное напряжение, под действием которого по этим обмоткам протекает ток и создаёт вращающееся магнитное поле. Магнитное поле воздействует на обмотку ротора и по закону электромагнитной индукции наводит в ней ЭДС. В обмотке ротора под действием наводимой ЭДС возникает ток. Ток в обмотке ротора создаёт собственное магнитное поле, которое вступает во взаимодействие с вращающимся магнитным полем статора. В результате на каждый зубец магнитопровода ротора действует сила, которая, складываясь по окружности, создаёт вращающий электромагнитный момент, заставляющий ротор вращаться.
Слайд 6
Короткозамкнутый ротор Короткозамкнутая обмотка ротора, часто называемая «беличья клетка» из-за внешней схожести конструкции, состоит из медных или алюминиевых стержней, замкнутых накоротко с торцов двумя кольцами. Стержни этой обмотки вставляют в пазы сердечника ротора. Сердечники ротора и статора имеют зубчатую структуру. В машинах малой и средней мощности обмотку обычно изготавливают путём заливки расплавленного алюминиевого сплава в пазы сердечника ротора. Вместе со стержнями «беличьей клетки» отливают короткозамыкающие кольца и торцевые лопасти, осуществляющие вентиляцию машины. В машинах большой мощности «беличью клетку» выполняют из медных стержней, концы которых соединяют с короткозамыкающими кольцами при помощи сварки.
Слайд 7
Массивный ротор Такой ротор изготавливают полностью из ферромагнитного материала, то есть фактически это стальной цилиндр. Ферромагнитный ротор одновременно выполняет роль как магнитопровода, так и проводника (вместо обмотки). Вращающееся магнитное поле индуцирует в роторе вихревые токи, которые взаимодействуя с магнитным потоком статора создают вращающий момент.
Слайд 8
Фазный ротор Фазный ротор имеет трёхфазную (в общем случае — многофазную) обмотку, обычно соединённую по схеме «звезда» и выведенную на контактные кольца, вращающиеся вместе с валом машины.
Слайд 9
Двигательный режим Если ротор неподвижен или частота его вращения меньше синхронной, то вращающееся магнитное поле пересекает проводники обмотки ротора и индуцирует в них ЭДС, под действием которой в обмотке ротора возникает ток. На проводники с током этой обмотки, действуют электромагнитные силы; их суммарное усилие образует электромагнитный вращающий момент, увлекающий ротор вслед за магнитным полем.
Слайд 10
Генераторный режим Если ротор разогнать с помощью внешнего момента до частоты, большей частоты вращения магнитного поля, то изменится направление ЭДС в обмотке ротора и активной составляющей тока ротора, то есть асинхронная машина перейдёт в генераторный режим. При этом изменит направление и электромагнитный момент, который станет тормозным
Слайд 11
Режим холостого двигателя Режим холостого хода асинхронного двигателя возникает при отсутствии на валу нагрузки в виде редуктора и рабочего органа. Из опыта холостого хода могут быть определены значения намагничивающего тока и мощности потерь в магнитопроводе, в подшипниках, в вентиляторе. Сам принцип работы двигателя подразумевает отставание ротора от поля статора для создания поля ротора
Слайд 12
Режим электромагнитного тормоза Если изменить направление вращения ротора или магнитного поля так, чтобы они вращались в противоположных направлениях, то ЭДС и активная составляющая тока в обмотке ротора будут направлены так же, как в двигательном режиме, и машина будет потреблять из сети активную мощность. Однако электромагнитный момент будет направлен встречно моменту нагрузки, являясь тормозящим. Этот режим применяют кратковременно, так как при нём в роторе выделяется много тепла, которое двигатель не способен рассеять, что может вывести его из строя. Для более мягкого торможения может применяться генераторный режим, но он эффективен только при оборотах, близких к номинальным.
Слайд 13
Механическая характеристика асинхронной машины: а —генераторный режим, б — двигательный режим, в —режим электромагнитного тормоза.
Слайд 14
Схема замещения асинхронного двигателя Для анализа работы асинхронного двигателя пользуются схемой замещения. Схема замещения асинхронного двигателя аналогична схеме замещения трансформатора и представляет собой электрическую схему, в которой вторичная цепь соединена с первичной цепью гальванически вместо магнитной связи, существующей в двигателе.
Слайд 15
Обмотка статора представляет собой трёхфазную (в общем случае — многофазную) обмотку, проводники которой равномерно распределены по окружности статора и пофазно уложены в пазах Обмотка статора
Слайд 16
Спасибо за внимание!
Кто чем богат, тот тем и делится!
Цветок или сорняк?
Л. Нечаев. Про желтые груши и красные уши
Учимся рисовать горный пейзаж акварелью
Прыжок (быль). Л.Н.Толстой