В этой работе ученица собрала информацию об этих теоремах
Вложение | Размер |
---|---|
Теоремы Чевы и Менелая. | 55 КБ |
Вспомогательные конструкции и их свойства
В этой части мы рассмотрим некоторые важные конфигурации, в которых участвуют треугольник, окружность, прямая или угол.
Треугольник и секущая, теорема Менелая
Секущей будем называть прямую, которая пересекает некоторую геометрическую фигуру: треугольник, окружность, угол и т.п. Иногда удобно брать не только точки пересечения фигуры и секущей, но и некоторые дополнительные точки: например, точку пересечения прямой, на которой лежит сторона треугольника и секущей.
Рассмотрим секущую треугольника. К ней относится одна замечательная теорема: теорема Менелая, которая связывает отношения длин отрезков, на которые секущая делит стороны треугольника.
Теорема Менелая. Пусть пересечен прямой, не параллельной стороне АC и пересекающей две его стороны АB и ВС соответственно в точках C1 и А1, а прямую АC в точке B1 тогда
(1)
Справедлива также обратная теорема Менелая.
Теорема, обратная теореме Менелая. В треугольнике АВС точки А1, В1, С1 принадлежат прямым ВС, АС, АВ соответственно, тогда если
,
то точки А1, В1, С1 лежат на одной прямой.
Упражнение 1. Докажите теорему Менелая. (Указание: опустите на секущую перпендикуляры из вершин треугольника и рассмотрите пары получившихся подобных прямоугольных треугольников. Заменив в (1) отношения гипотенуз на отношения соответствующих катетов и выполнив сокращения, получите нужный результат.)
Упражнение 2. Докажите теорему, обратную теореме Менелая. (Указание: воспользуйтесь методом «от противного». Предположите, что, например, точка A1 не лежит на секущей. Тогда секущая пересечет сторону BC в некоторой точке A2, для которой выполнена прямая теорема Менелая. Далее самостоятельно получите противоречие.)
Треугольник и точка, теорема Чевы
Второй интересной конструкцией, которую мы рассмотрим, является треугольник, у которого три отрезка, проведенных из вершин на противоположные стороны или их продолжения, пересекаются в одной точке.
Свойства этой конструкции описывает теорема Чевы.
Теорема Чевы. В произвольном треугольнике АВС на сторонах ВС, СА, АВ или их продолжениях взяты соответственно точки А1, В1, С1. Если прямые АА1, ВВ1, СС1 пересекаются в некоторой внутренней точке Z треугольника АВС то выполнено условие
. (2)
Так же, как и в случае теоремы Менелая, для теоремы Чевы справедливо обратное утверждение.
Теорема, обратная теореме Чевы. Если в произвольном треугольнике АВС на сторонах ВС, СА, АВ или их продолжениях взяты соответственно точки А1, В1, С1, для которых выполнено условие
,
то прямые АА1, ВВ1, СС1 пересекаются в одной точке.
Упражнение 3. Докажите теорему Чевы. (Указание: попробуйте записать условие теоремы Менелая для треугольников ABB1 и B1BC и секущих CC1 и AA1, а затем исключите из этих равенств «лишние» отрезки.)
Упражнение 4. Докажите теорему, обратную теореме Чевы. (Указание: вновь используйте метод доказательства «от противного».)
Кто должен измениться?
Именинный пирог
Сорняки
За еду птицы готовы собирать мусор
Туманность "Пузырь" в созвездии Кассиопея