Одним из ключевых связующих звеньев между математикой и физикой является понятие векторной величины. Без знания векторной алгебры не может вообще идти речь о глубоком понимании многих разделов физики. Векторная алгебра является фундаментом, на котором построено все здание классической физики. Отсутствие на уроках математики задач физического содержания препятствует более успешному усвоению темы векторы, так как именно в физике тема изучается более углубленно, практически все физические задачи несут в себе понятие вектора.
Объектом исследования являются векторы и его свойства.
Предмет исследования: применение вектора и его свойств при решении задач школьного курса физики.
Цель работы:
- показать применение вектора и его свойств при решении физических задач школьного курса физики 7-11 классов, олимпиадных задач, а так же задач ЕГЭ;
- определить сущность, функции межпредметных связей и их классификацию, а так же повысить собственный уровень знаний и умений в применении свойств вектора при решении физических задач.
Слайд 1
в физике Векторы и математике у х А О В nСлайд 2
Объектом исследования являются Векторы и его свойства
Слайд 3
Предмет исследования Применение вектора и его свойств при решении задач школьного курса физики
Слайд 4
Цель работы -определить сущность, функции межпредметных связей и их классификацию, а так же повысить собственный уровень знаний и умений в применении свойств вектора при решении физических задач; -показать применение вектора и его свойств при решении физических задач школьного курса физики 7-11 классов, олимпиадных задач, а так же задач ЕГЭ;
Слайд 5
Задачи 3. Решить задачи разного уровня сложности, содержащиеся в учебниках физики, сборниках задач, олимпиадных задач и задач ЕГЭ по выбранным темам. 1. Сопоставить понятие вектор, которое дается в учебниках школьного курса физики и геометрии; 2. Проанализировать содержание курса физики 7-11 классов и отобрать темы, в которых при решении задач используется свойства вектора;
Слайд 6
Актуальность Необходимость формирования целостного представления о применении векторов в физике и математике и подготовки к ЕГЭ по этим предметам.
Слайд 7
Практическая значимость работы Заключается в том, что предложенные в работе задачи могут быть использованы на уроках математики, быть полезными учащимся при изучении курса физики и подготовке к ЕГЭ, решении практических задач. Данная работа может представлять интерес для учителей физики и математики при подготовке к урокам и организации повторения.
Слайд 8
Векторы в математике Впервые, понятие вектора дается на уроке геометрии в 8 классе учебника А. В. Погорелова. Вектором называют направленный отрезок, направление которого определяется указанием его начала и конца.
Слайд 9
Векторы в математике Абсолютной величиной (или модулем) вектора называется длина отрезка, изображающая вектор. Если начало вектора совпадает с его концом, такой вектор называется нулевым вектором. Нулевой вектор обозначается .
Слайд 10
Векторы в математике Два вектора называются равными , если они совмещаются параллельным переносом. Равные векторы одинаково направлены и равны по абсолютной величине. Равные векторы имеют равные соответствующие координаты. m n
Слайд 11
Действия над векторами сложение векторов умножение вектора на число скалярное произведение векторов разложение вектора по координатным осям
Слайд 12
Сложение векторов Правило треугольника Правило параллелограмма
Слайд 13
Умножение вектора на число ( λ =
Слайд 14
Скалярное произведение векторов ( . ( = + Если скалярные векторы перпендикулярны, то их произведение равно нулю.
Слайд 15
Разложение вектора по координатным осям Вектор называется единичным, если его абсолютная величина равна единице. Единичные векторы, имеющие направления координатных полуосей, называются координатными векторами. (1;0) (0;1) и ( λ + μ λ . μ
Слайд 16
Векторы в физике В школьном курсе физики учебника А.В. Пёрышкина 7 класса, впервые понятие векторной величины вводится на примере таких физических величин, как Сила и Скорость . Так же вводится понятие Вес тела , которое тоже является векторной величиной. Болеет углубленно понятие вектора и его свойств затрагивается при изучении физики 9 класса учебника А. В. Пёрышкина и Е. М. Гутник .
Слайд 17
Проекция вектора на ось Проекцией точки А на ось l называется число, соответствующее основанию перпендикуляра АВ, опущенного на ось l из точки А. Проекцией вектора на ось l называется разность проекций конца вектора и его начала.
Слайд 18
Решение физических задач векторным методом Задача . С какого расстояния S от центра полусферы радиуса R =1,35 м, с какой скоростью и под каким углом β нужно бросить маленькую шайбу (из положения 1), чтобы она, попав на полусферу, остановилась на её вершине (положение 2) рисунок (а)? Трением шайбы о полусферу и сопротивлением воздуха пренебречь. Ускорение свободного падения считать равным 10 м/с 2 . Сформулируем обратную задачу : На каком расстоянии S от центра полусферы, с какой скоростью U и под каким углом β упадёт шайба, скатывающаяся с вершины полусферы радиуса R рисунок (б)? Трением шайбы о поверхность полусферы и сопротивлением воздуха пренебречь.
Слайд 19
Решение физических задач векторным методом V 0 = . (1.1 ) Решение. mg cos α = m V 0 2 /R, откуда V 0 = . (1.2) h = R(1 – cos α) V 0 = . (1.3) cos α = 2/3 (1.4) V 0 = = = 3 м/с (1.5) Х = V ox t = ( V o cos α)t ( 1.6) Y = V oy t + gt 2 /2 = (V o sin α)t +gt 2 /2 ( 1.7) При t = t п – времени полёта шайбы до точки падения, X = X max , a Y = R cos α = 1,35 . 2/3 = 0,9 м sin α = = = = /3. ………………
Слайд 20
Решение физических задач векторным методом 0,9 = t п + 5t п 2 , (1.8) t п = ( + )/ 10 = 0,7 с. X max = ( V o cos α)t п = 3 . 2/3 . 0,7 = 1,4 м. S = X max + R sin α = 1,4 + 1,35 . /3 = 2,41 м. V = ( 1.9). V ox = V o cos α = 3 . 2/3 = 2 м; V y = V o sin α + gt п = 3 . /3 + 10 . 0,7 = 9,24 м/с , V = = 9,45 м/с. tg β = V y / V ox = 9,24/ 2 = 4,62 β = 77,8 o .
Слайд 21
Решение физических задач векторным метом Задача . Частица массы 2m налетает на неподвижную частицу массы m. После столкновения частицы разлетаются симметрично под углом 45 о к направлению начальной скорости, рисунок (а). Во сколько раз возросла суммарная кинетическая энергия после столкновения?
Слайд 22
Решение. = .(1.1 ) p = (1.2) Е к = р 2 /4m = 2р 1 2 / 4m = р 1 2 / 2m . (1.3 ) Е к1 + Е к2 = (р 1 2 / 2m) + (p 2 2 / 4m) = 3p 1 2 /4m. (1.4) (Е к1 + Е к2 )/ Е к = 3p 1 2 2m / p 1 2 4m = 3/2 = 1,5. (1.7 ) Решение физических задач векторным метом
Слайд 23
Решение физических задач векторным метом По двум длинным параллельным проводникам, расположенным на расстоянии r, текут токи I 1 и I 2 в направлениях, указанных на рисунке (а), на котором изображены сечения проводников плоскостью, перпендикулярной им. Определить индукцию магнитного поля в точке, находящейся на расстоянии r 1 от первого проводника и на расстоянии r 2 от второго. Задача . (а) (б)
Слайд 24
Решение физических задач векторным метом Решение. В= (1.1 ) а cos α по той же теореме, но только для треугольника rr 1 r 2 : cos α = (r 1 2 + r 2 2 – r)/ 2r 1 r 2 . (1.2 ) В = (1.3) (а) (б)
Слайд 25
Задачи из ЕГЭ по физике Через неподвижный блок переброшена нерастяжимая нить. На концах этой нити подвешены грузы равных масс М. На один из грузов поставили груз массой m . Определите ускорение движения грузов, силу натяжения нити, силу давления груза m на M , а также силу давления на ось блока. Массой блока и нити можно пренебречь. Задача .
Слайд 26
Задачи из ЕГЭ по физике Решение. для тела 1 для тела 2 для тела m Найдем mg = a ( 2 M + m ) a = g . Из уравнения (1) T = Mg + Ma = . Из уравнения (3) сила давления P = mg - ma = mg - m = .
Слайд 27
Задачи из ЕГЭ по физике = -2 T = 0 = 2 T
Слайд 28
Задачи из ЕГЭ по физике При скоростном спуске лыжник скользил вниз по склону с углом наклона , не отталкиваясь палками. Коэффициент трения лыж о снег 0.1. Сила сопротивления воздуха пропорциональна квадрату скорости: F = k , где k =0.7 кг/м. Какова максимальная скорость лыжника, если его масса 100 кг? Задача.
Слайд 29
Задачи из ЕГЭ по физике Решение. = k a = a ( t ) а= u ’( t )=0 =29,8 м/с
Слайд 30
Задачи из ЕГЭ по физике Два небольших упругих шарика подвешены на нити =10 см и =5 см так, что они соприкасаются, линия их центров горизонтальна, а нити вертикальны. Масса шариков Шарик массой отклоняют на угол от вертикали отпускают. На какие углы отклонятся нити после абсолютно упругого соударения шариков? Задача.
Слайд 31
Задачи из ЕГЭ по физике Решение. Из ∆ AOB OB = BD=OD-OB= cos α= (1) ; = / 2; ⟹ h = m /2⟹ = Рассмотрим систему, состоящую из двух шариков. = /2 = /2 + /2
Слайд 32
Задачи из ЕГЭ по физике = ⟹ = и = = /(2 g ) cos = 1- =1- =1-( ) =1- = = 1- (1- cos α )= =38, cos =1- =1 - = 1- =1- 2gh = = 1- 4(1- cos α) ( = ⟹ = arccos =8,
Слайд 33
в физике Векторы и математике у х А О В n
Туманность "Пузырь" в созвездии Кассиопея
Ребята и утята
Попробуем на вкус солёность моря?
10 зимних мастер-классов для детей по рисованию
Подарок