1).Определение сечений
2)Построение сечения
3)Аксиоматический метод
4)Задачи на сечения
Вложение | Размер |
---|---|
postroenie_secheniy.pptx | 258.59 КБ |
Слайд 1
Построение сечений многогранников Презентацию выполнила хайрутдинова Анна 11»б»Слайд 2
Определение сечения. Секущей плоскостью многогранника назовем любую плоскость, по обе стороны от которой имеются точки данного многогранника. Секущая плоскость пересекает грани многогранника по отрезкам. Многоугольник, сторонами которого являются эти отрезки, называется сечением многогранника .
Слайд 3
МНОГОГРАННИКИ A 1 A B C D B 1 C 1 D 1 B A D S C A B C S A B C A 1 B 1 C 1
Слайд 4
P N Построить сечение тетраэдра плоскостью, заданной тремя точками. Построение: А В С D P M N 2. Отрезок PN А В С D M L 1. Отрезок MP Построение: 3. Отрезок MN MPN – искомое сечение 1. Отрезок MN 2. Луч NP; луч NP пересекает АС в точке L 3. Отрезок ML MNL –искомое сечение
Слайд 5
Аксиоматический метод Метод следов Суть метода заключается в построении вспомогательной прямой, являющейся изображением линии пересечения секущей плоскости с плоскостью какой-либо грани фигуры . Удобнее всего строить изображение линии пересечения секущей плоскости с плоскостью нижнего основания. Эту линию называют следом секущей плоскости. Используя след, легко построить изображения точек секущей плоскости, находящихся на боковых ребрах или гранях фигуры .
Слайд 6
А В С S Задача 1. Построить сечение плоскостью, проходящей через данные точки D, Е, K . D E K M F Построение: 2. ЕК 3. ЕК ∩ АС = F 4 . FD 5. FD ∩ B С = M 6 . KM 1 . DE D Е K М – искомое сечение
Слайд 7
Пояснения к построению: 1. Соединяем точки K и F , принадлежащие одной плоскости А 1 В 1 С 1 D 1 . А D В 1 В С А 1 C 1 D 1 Задача 2 . Построить сечение плоскостью, проходящей через данные точки Е, F, K . К L М Построение: 1. KF 2. FE 3. FE ∩ А B = L EFKNM – искомое сечение F E N 4 . LN ║ FK 6 . EM 5 . LN ∩ AD = M 7 . KN Пояснения к построению: 2. Соединяем точки F и E , принадлежащие одной плоскости АА 1 В 1 В. Пояснения к построению: 3. Прямые FE и АВ, лежащие в одной плоскости АА 1 В 1 В, пересекаются в точке L . Пояснения к построению: 4 . Проводим прямую LN параллельно FK (если секущая плоскость пересекает противоположные грани, то она пересекает их по параллельным отрезкам). Пояснения к построению: 5 . Прямая LN пересекает ребро AD в точке M . Пояснения к построению: 6 . Соединяем точки Е и М, принадлежащие одной плоскости АА 1 D 1 D . Пояснения к построению: 7 . Соединяем точки К и N , принадлежащие одной плоскости ВСС 1 В 1 .
Слайд 8
А D В 1 В С А 1 C 1 D 1 Задача 3. Построить сечение плоскостью, проходящей через точки К, L, М. К L М Построение: 1. ML 2. ML ∩ D 1 А 1 = E 3. EK М LFKPG – искомое сечение F E N P G T 4 . EK ∩ А 1 B 1 = F 6 . LM ∩ D 1 D = N 5 . LF 7 . Е K ∩ D 1 C 1 = T 8 . NT 9 . NT ∩ DC = G NT ∩ CC 1 = P 10 . MG 11 . PK
Слайд 9
Практическая работа. Постройте сечение многогранника плоскостью, проходящей через указанные точки. M A 1) 1 ) 2 ) 2 ) В С К В A С E F H E H F 1 вариант 2 вариант D C B M N P А F D C B M N P А F
Слайд 10
Проверьте правильность построения сечения. M A 1) 1) 2) 2) В С К В A С E F H E H F 1 вариант 2 вариант D C B M N P А F F X Y Z X D C B M N P А F X Y
Слайд 11
Спасибо за внимание!
Проказы старухи-зимы
Как нарисовать зайчика
Ласточка. Корейская народная сказка
Весенняя сказка
Девятая загадочная планета Солнечной системы