Version:1.0 StartHTML:0000000167 EndHTML:0000002199 StartFragment:0000000504 EndFragment:0000002183
Исследовательская работа, представленная в форме реферата на тему
«Пифагор. Теорема Пифагора. Доказательства, обобщение, области применения».
Трудно найти человека, у которого имя Пифагора не ассоциировалось бы с его теоремой. Пожалуй, даже те, кто в своей жизни навсегда распрощался с математикой, сохраняют воспоминания о «пифагоровых штанах» - квадрате на гипотенузе, равновеликом двум квадратам на катетах.
Вложение | Размер |
---|---|
teorema_pifagora.odt | 311.68 КБ |
РЕФЕРАТ
на тему
«Пифагор. Теорема Пифагора. Доказательства, обобщение, области применения.»
Исследовательскую работу в форме реферата выполнила: Крюченкова Евгения,
ученица 10р класса ЦДО санаторной школы – интерната №28 города Ростова-на-Дону
Руководитель: Мартыненко Наталья Николаевна, учитель математики ЦДО санаторной школы – интерната №28 города Ростова-на-Дону
2012-2013 учебный год
Оглавление:
№ | Название глав и пунктов | Страницы |
I | Введение | |
1 | Обоснование темы | |
2 | Актуальность темы | |
3 | Цели и задачи | |
II | Основная часть | |
1 | Методика исследований | |
2 | Биография Пифагора | |
3 | Школа Пифагора | |
4 | История теоремы Пифагора | |
5 | Формулировки теоремы Пифагора | |
6 | Различные способы доказательства теоремы Пифагора: 6.1.Простейшее 6.2.Метод подобия 6.3.Методом площадей 6.4.Через определение косинуса угла прямоугольного треугольника 6.5.Древнекитайское доказательство 6.6.Доказательство Гарфилда 6.7.Доказательство методом Мёльманна 6.8. Доказательство методом Евклида 6.9.Доказательство Леонардо да Винчи | |
7 | Обобщение теоремы Пифагора | |
8 | Применение теоремы Пифагора | |
III | Заключение. Выводы. Результаты исследования. | |
IV | Список используемых источников |
Эпиграф «Только немногие знают, как много надо знать, чтобы понять, как мало знаешь» Вернер Гейзенберг
I. Ведение
На протяжении многих лет людей интересовал вопрос о теореме Пифагора и о различных способах её доказательства. В современных школьных учебниках рассматриваются традиционные доказательства теоремы Пифагора. Это - алгебраическое доказательство, основанное на площади. Приведено в учебнике «Геометрия 7-9», Л. С. Атанасян. Доказательство Евклида рассматривается в учебнике «Геометрия: Учебник для 6-9 классов средней школы», А.П.Киселёв.
Трудно найти человека, у которого имя Пифагора не ассоциировалось бы с его теоремой. Пожалуй, даже те, кто в своей жизни навсегда распрощался с математикой, сохраняют воспоминания о «пифагоровых штанах» - квадрате на гипотенузе, равновеликом двум квадратам на катетах.
Причина такой популярности теоремы Пифагора триедина: это простота - красота - значимость. В самом деле, теорема Пифагора проста, но не очевидна. Это сочетание двух противоречивых начал придает ей особую притягательную силу, делает ее красивой.
2. Актуальность темы
Теорема Пифагора имеет огромное значение: она применяется в геометрии буквально на каждом шагу, и тот факт, что существует около 500 различных доказательств этой теоремы (геометрических, алгебраических, механических и т.д.) свидетельствует о гигантском числе ее конкретных реализаций, Теорема Пифагора представляет большой интерес-это фундамент, основа всех математических вычислений, расчетов и многих изобретений. Считаю, что его труды и великие открытия, которые он произвел, до сих пор актуальны, так как находят свое применение во многих отраслях науки и жизнедеятельности всего человечества. Куда бы мы ни посмотрели, везде можно увидеть плоды его великих идей, воплощенные в различные реалии современной жизни.
3. Цели и задачи
Цель: Знакомство с историей жизни, изучение творческого пути Пифагора. Изучение доказательств теоремы. Выяснить, почему так знаменита теорема Пифагора? Возможность собрать и представить наиболее полную информацию по данной теме для того, чтобы дать возможность другим ученикам получить более глубокие сведения по теме «Теорема Пифагора». Рассмотреть задачи, которые опираются на теорему Пифагора, затрагивающие различные области науки, искусства и техники.
Задачи:
1.Изучить биографию Пифагора;
2. Найти и изучить различные способы существующих доказательств теоремы;
3. Определить значение теоремы Пифагора для развития науки и использования в различных областях;
4. Работать с литературой, в сети Интернета;
5. Учиться обобщать и обрабатывать полученную информацию.
II. Основная часть
1. Методика исследований
Я очень мало знала о Пифагоре, тем более о философских системах. Постепенно воспринимала изучаемый материал, размышляла над ним, а затем приходила к самостоятельным микрооткрытиям. При этом сам процесс исследовательской работы для меня был не менее важен, чем конечный результат. Я исследовала следующие вопросы: «Биография Пифагора», «Пифагор-философ и педагог», «Теорема Пифагора», « Различные способы доказательства», «Применение», «Значение». С помощью поисковой программы www.google.ru сделала запрос по ключевым словам: Пифагор, Древняя Греция, теорема Пифагора, различные способы доказательства, применение теоремы Пифагора и др. Полученную информацию систематизировала. Также очень много информации получила из печатных источников.
2.Биография Пифагора
Пифагор Самосский - великий греческий ученый. Его имя знакомо каждому школьнику. Про жизнь Пифагора известно очень мало, с его именем связано большое число легенд. Пифагор - один из самых известных ученых, но и самая загадочная личность, человек-символ, философ и пророк. Он был властителем дум и проповедником созданной им религии. Его обожествляли и ненавидели… Так кто же ты, Пифагор?
Он родился около 580-500 гг. до н. э. на острове Самос, далеко от Греции. Отцом Пифагора был Мнесарх, резчик по драгоценным камням. Имя же матери считается неизвестным, но при изучении одного из источников я выяснила, что мать звали Парфенисой. По многим свидетельствам, родившийся мальчик был сказочно красив, а вскоре проявил и свои незаурядные способности.
Среди учителей юного Пифагора называют имена старца Гермодаманта и Ферекида Сиросского (хотя и нет твердой уверенности в том, что именно они были первыми учителями Пифагора). Целые дни проводил юный Пифагор у ног старца Гермодаманта, внимая мелодии кифары и гекзаметрам Гомера. Страсть к музыке и поэзии великого Гомера Пифагор сохранил на всю жизнь. И, будучи признанным мудрецом, окруженным толпой учеников, Пифагор начинал день с пения одной из песен Гомера. Ферекид же был философом и считался основателем италийской школы философии. Но как бы то ни было, неугомонному воображению юного Пифагора очень скоро стало тесно на маленьком Самосе, он видел в ясные дни желтые дороги, бегущие по большой земле в большой мир. Они звали его.
Он отправляется в Милет, где встречается с другим ученым - Фалесом. Слава об этом мудреце гремела по всей Элладе. Во время встреч велись оживленные беседы. Именно Фалес посоветовал ему отправиться за знаниями в Египет, что Пифагор и сделал.
Совсем юным покинул Пифагор родину. Сначала приплыл к берегам Египта, прошел его вдоль и поперек. Внимательно присматривался к окружающим, прислушивался к жрецам. В Египте, рассказывают, Пифагор попал в плен к Камбизу, персидскому завоевателю, и его увезли в Вавилон. Пифагор знал, что это величайший город мира, он быстро освоился со сложными вавилонскими традициями. Жадно впитывал речи халдейских жрецов. У халдейских магов изучал теорию чисел.
В течение 22 лет он проходил обучение в храмах Мемфиса и получил посвящение высшей степени. Здесь же он глубоко изучил математику, “науку чисел или всемирных принципов”, из которой впоследствии сделал центр своей системы. Из Мемфиса, по приказу вторгшегося в Египет Камбиза, Пифагор вместе с египетскими жрецами попал в Вавилон, где провел еще 12 лет. Здесь он имел возможность изучить многие религии и культы, проникнуть в мистерии древней магии наследников Зороастра.
3. Школа Пифагора
Приблизительно в 530 году Пифагор, наконец, возвратился в Грецию и вскоре переселился в Южную Италию, в г. Кротон. В Кротоне он основал пифагорейский союз, который был одновременно философской школой, политической партией и религиозным братством.
Свою школу Пифагор создает как организацию со строго ограниченным числом учеников из аристократии, и попасть в нее было не просто. Претендент должен был выдержать ряд испытаний; по утверждению некоторых историков, одним из таких испытаний являлся обет пятилетнего молчания. Другим законом организации было хранение тайны, несоблюдение которой строго каралось – вплоть до смерти.
Главным пифагорейским символом здоровья и опознавательным знаком была пентаграмма - звездчатый пятиугольник, образованный диагоналями правильного пятиугольника. Он содержал все пропорции: геометрическую, арифметическую, золотую. Она была тайным знаком, по которому пифагорейцы узнавали друг друга. В средние века считалось, что пентаграмма предохраняет от «нечистой силы». Пятиконечной звезде около 3000 лет. Сегодня пятиконечная звезда реет на флагах едва ли не половины стран мира. Внутренняя красота математического строения была еще замечена Пифагором. Нравственные принципы, проповедуемые Пифагором и сегодня достойны подражания. Его школа способствовала формированию интеллектуальной элиты. Пифагорейцы жили по определенным заповедям, и нам тоже не помешало бы их придерживаться, хотя им уже около двух с половиной тысяч лет. Например:
- не делай того, чего не знаешь;
- поступай так, чтобы впоследствии не огорчаться и не раскаиваться;
- мечом огня не разгребай.
С самого начала в пифагоризме сформировались два различных направления – "асуматики" и "математики". Первое направление занималось этическими и политическими вопросами, воспитанием и обучением, второе – главным образом исследованиями в области геометрии.
Школа вызвала недовольство жителей острова, и Пифагору пришлось покинуть родину. Он переселяется в южную Италию- колонию Греции - и здесь, в Кротоне, вновь основывает школу - пифагорейский союз, просуществовавший около двух веков.
Довольно быстро он завоевывает большую популярность среди жителей. Пифагор умело использует знания, полученные в странствиях по свету. Со временем ученый прекращает выступления в храмах и на улицах. Уже в своем доме Пифагор учит медицине, принципам политической деятельности, астрономии, математике, музыке, этике и многому другому. Из его школы вышли выдающиеся политические и государственные деятели, историки, математики и астрономы. Это был не только учитель, но и исследователь. Исследователями становились и его ученики. В Школе Пифагора впервые высказана догадка о шарообразности Земли. Мысль о том, что движение небесных тел подчиняется определенным математическим соотношениям, впервые появились именно в Школе Пифагора. Пифагор прожил 80 лет. Существует много легенд о его смерти. По одной из них он был убит в уличной схватке.
Для нас Пифагор - математик. В древности было иначе. Для своих современников Пифагор прежде всего был религиозным пророком, воплощением высшей божественной мудрости. Одни называли его математиком, философом, другие - шарлатаном. Интересен и тот факт, что Пифагор первым и четыре раза подряд был олимпийским чемпионом по кулачному бою.
4. История теоремы Пифагора
С его именем связано многое в математике и в первую очередь, конечно, теорема, носящая его имя. Это теорема Пифагора. В настоящее время все согласны с тем, что эта теорема не была открыта Пифагором. Она была известна еще до него. Ее частные случаи знали в Китае, Вавилонии, Египте.
Исторический обзор начинается с древнего Китая. Здесь особое внимание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: "Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4".
Кантор (крупнейший немецкий историк математики) считает, что равенство
3²+4²=5² было известно уже египтянам еще около 2300 г. до н. э. По мнению Кантора гарпедонапты, или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5. Очень легко можно воспроизвести их способ построения. Возьмем веревку длиною в 12 метров и привяжем к ней по цветной полоске на расстоянии 3 метра от одного конца и 4 метра от другого. Прямой угол окажется заключенным между сторонами длиной в 3 и 4 метра.
Египетский треугольник — прямоугольный треугольник с соотношением сторон 3:4:5. Особенностью такого треугольника, известной ещё со времён античности, является то, что при таком отношении сторон теорема Пифагора даёт целые квадраты как катетов, так и гипотенузы, то есть 9:16:25. Египетский треугольник является простейшим (и первым известным) из Героновых треугольников — треугольников с целочисленными сторонами и площадями. Название треугольнику с таким отношением сторон дали эллины: в VII - V веках до н. э. греческие философы и общественные деятели активно посещали Египет. Так, например, Пифагор в 535 до н. э. по настоянию Фалеса для изучения астрономии и математики отправился в Египет — и, судя по всему, именно попытка обобщения отношения квадратов, характерного для египетского треугольника, на любые прямоугольные треугольники и привела Пифагора к доказательству знаменитой теоремы. Египетский треугольник с соотношением сторон 3:4:5 активно применялся для построения прямых углов землемерами и архитекторами.
Хотя гарпедонаптам можно было бы возразить, что их способ построения становиться излишним, если воспользоваться, например, деревянным угольником, применяемым всеми плотниками. И действительно, известны египетские рисунки, на которых встречается такой инструмент, например рисунки, изображающие столярную мастерскую.
Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом к 2000 г. до н. э., приводится приближенное вычисление гипотенузы прямоугольного треугольника. Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере, в некоторых случаях. Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой - на критическом изучении греческих источников, Ван-дер-Варден (голландский математик) сделал следующий вывод:
"Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцы, является не открытие математики, но ее систематизация и обоснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку."
Однако одни полагают, что Пифагор первым дал ее полноценное доказательство, другие же отказывают ему и в этой заслуге. Зато не найти, пожалуй, никакой другой теоремы, заслужившей столько всевозможных сравнений. Во Франции и некоторых областях Германии в средневековье теорему Пифагора называли "мостом ослов". Оказывается слабые ученики, заучившие теоремы наизусть, без понимания, и прозванные поэтому «ослами», были не в состоянии преодолеть теорему Пифагора. У математиков арабского Востока эта теорема получила название "теоремы невесты". Дело в том, что в некоторых списках "Начал" Евклида эта теорема называлась "теоремой нимфы" за сходство чертежа с пчелкой, бабочкой, что по-гречески называлось нимфой. Но словом этим греки называли еще некоторых богинь, а также вообще молодых женщин и невест. При переводе с греческого арабский переводчик, не обратив внимания на чертеж, перевел слово "нимфа" как "невеста", а не "бабочка". Так появилось ласковое название знаменитой теоремы - "теорема невесты".
В средние века теорема Пифагора, определяла границу если не максимально возможных, то по крайней мере хороших математических знаний.
Доказательство теоремы Пифагора учащиеся средних веков считали очень трудным и называли его Dons asinorum- ослиный мост, или elefuga- бегство "убогих", так как некоторые "убогие" ученики, не имевшие серьезной математической подготовки, бежали от геометрии. Слабые ученики, заучившие теоремы наизусть, без понимания, и прозванные поэтому "ослами",были не в состоянии преодолеть теорему Пифагора, служившую для них вроде непреодолимого моста. Из-за чертежей, сопровождающих теорему Пифагора, учащиеся называли ее также "ветряной мельницей", составляли стихи вроде "Пифагоровы штаны на все стороны равны", рисовали карикатуры.
Сегодня принято считать, что Пифагор дал первое доказательство носящей его имя теоремы. Увы, от этого доказательства также не сохранилось никаких следов. Теорема гласит: Квадрат, построенный на гипотенузе прямоугольного треугольника, равновелик сумме квадратов, построенных на его катетах.
Таким образом, Пифагор не открыл это свойство прямоугольного треугольника, он, вероятно, первым сумел его обобщить и доказать, перевести тем самым из области практики в область науки. Теорема Пифагора попала в Книгу рекордов Гиннеса, как теорема с наибольшим количеством доказательств. Это говорит о неослабевающем интересе к ней со стороны широкой математической общественности. Теорема Пифагора послужила источником для множества обобщений и плодородных идей. Глубина этой древней истины, по-видимому, далеко не исчерпана.
5. Формулировки теоремы Пифагора
Геометрическая формулировка:
Изначально теорема была сформулирована следующим образом:
В прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах. |
Алгебраическая формулировка:
В прямоугольном треугольнике квадрат длины гипотенузы равен сумме квадратов длин катетов. |
То есть, обозначив длину гипотенузы треугольника через , а длины катетов через и :
а2+ в2=с2
Обе формулировки теоремы эквивалентны, но вторая формулировка более элементарна, она не требует понятия площади. То есть второе утверждение можно проверить, ничего не зная о площади и измерив только длины сторон прямоугольного треугольника.
Обратная теорема Пифагора:
Для всякой тройки положительных чисел а,в,с, таких, что а2+в2=с2,существует прямоугольный треугольник с катетами а,в и гипотенузой с. |
На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии.
Все их можно разбить на малое число классов. Самые известные из них: доказательства методом площадей, аксиоматические и экзотические доказательства (например, с помощью дифференциальных уравнений).
Я хочу вас познакомить с некоторыми из них.
Простейшее доказательство теоремы получается в случае равнобедренного прямоугольного треугольника. Вероятно, с него и начиналась теорема.
В самом деле, достаточно просто посмотреть на мозаику равнобедренных прямоугольных треугольников, чтобы убедиться в справедливости теоремы. Например, для ΔABC: квадрат, построенный на гипотенузе АС, содержит 4 исходных треугольника, а квадраты, построенные на катетах, - по два. Теорема доказана.
6.2.Метод подобия
Среди доказательств теоремы Пифагора алгебраическим методом первое место (возможно, самое древнее) занимает доказательство, использующее подобие. Приведу в современном изложении одно из таких доказательств, возможно принадлежащих Пифагору. Если Пифагор действительно предложил такое доказательство, то он был знаком и с целым рядом важных геометрических теорем, которые современные математики обычно приписывают Евклиду.
Пусть ABC есть прямоугольный треугольник с прямым углом C. Проведём высоту из C и обозначим её основание через H. Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC. Введя обозначения ВС=а, АС=в, АВ=с
получаем а/с=|НВ|/а, в/с=|АН|/в
Что эквивалентно а2=с*|НВ|; в2=с*|АН|
Сложив, получаем а2+ в2=с*(|НВ|+|АН|)=с2.
Или а2+ в2=с2, что и требовалось доказать
Ниже приведённые доказательства, несмотря на их кажущуюся простоту, вовсе не такие простые. Все они используют свойства площади, доказательства которых сложнее доказательства самой теоремы Пифагора.
(а+в)2=4*(ав/2)+с2; а2+2ав+в2=2ав+с2; или а2+ в2=с2, что и требовалось доказать.
6.4.Через определение косинуса угла прямоугольного треугольника
Пусть ΔАВС - данный прямоугольный треугольник с прямым углом С. Проведем высоту CD из вершины прямого угла С.
По определению косинуса угла(Косинусом острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе) соsА=AD/AC=AC/AB. Отсюда AB*AD=AC2. Аналогично соsВ=BD/BC=BC/AB. Отсюда AB*BD=ВС2. Складывая полученные равенства почленно и замечая, что AD+DB=AB, получим:АС2+ВС2=АВ(AD + DB)=АВ2. Теорема доказана.
6.6.Доказательство Гарфилда
c
B
A
C
a
b
6.7.Доказательство Мёльманна
Площадь данного прямоугольника с одной стороны равна 0.5 ab , с другой 0.5 pr , где p – полупериметр треугольника, r – радиус вписанной в него окружности ( r = 0.5(a+b-c)). 0.5ab=0.5pr=0.5(a+b+c)*0.5(a+b-c) Отсюда следует , что с2=а2+b2
6.8.Доказательство Евклида
Идея доказательства Евклида состоит в следующем: попробуем доказать, что половина площади квадрата, построенного на гипотенузе, равна сумме половин площадей квадратов, построенных на катетах, а тогда и площади большого и двух малых квадратов равны.
Рассмотрим чертеж слева. На нём мы построили квадраты на сторонах прямоугольного треугольника и провели из вершины прямого угла С луч s перпендикулярно гипотенузе AB, он рассекает квадрат ABIK, построенный на гипотенузе, на два прямоугольника — BHJI и HAKJ соответственно. Оказывается, что площади данных прямоугольников в точности равны площадям квадратов, построенных на соответствующих катетах.
Попытаемся доказать, что площадь квадрата DECA равна площади прямоугольника AHJK Для этого воспользуемся вспомогательным наблюдением: Площадь треугольника с той же высотой и основанием, что и данный прямоугольник, равна половине площади заданного прямоугольника. Это следствие определения площади треугольника как половины произведения основания на высоту. Из этого наблюдения вытекает, что площадь треугольника ACK равна площади треугольника AHK (не изображённого на рисунке), которая, в свою очередь, равна половине площади прямоугольника AHJK.
Докажем теперь, что площадь треугольника ACK также равна половине площади квадрата DECA. Единственное, что необходимо для этого сделать, — это доказать равенство треугольников ACK и BDA (так как площадь треугольника BDA равна половине площади квадрата по указанному выше свойству). Равенство это очевидно: треугольники равны по двум сторонам и углу между ними. Именно — AB=AK, AD=AC — равенство углов CAK и BAD легко доказать методом движения: повернём треугольник CAK на 90° против часовой стрелки, тогда очевидно, что соответствующие стороны двух рассматриваемых треугольников совпадут (ввиду того, что угол при вершине квадрата — 90°).
Рассуждение о равенстве площадей квадрата BCFG и прямоугольника BHJI совершенно аналогично.
Тем самым мы доказали, что площадь квадрата, построенного на гипотенузе, слагается из площадей квадратов, построенных на катетах. Идея данного доказательства дополнительно проиллюстрирована с помощью анимации, расположенной выше.
Данное доказательство также получило название «Пифагоровы штаны».
6.9. Доказательство Леонардо да Винчи
Главные элементы доказательства — симметрия и движение.
Рассмотрим чертёж, как видно из симметрии, отрезок СI рассекает квадрат ABHJ на две одинаковые части (так как треугольники ABC и JHI равны по построению).
Пользуясь поворотом на 90 градусов против часовой стрелки вокруг точки A, мы усматриваем равенство заштрихованных фигур CAJI и DABG.
Теперь ясно, что площадь заштрихованной нами фигуры равна сумме половин площадей маленьких квадратов (построенных на катетах) и площади исходного треугольника. С другой стороны, она равна половине площади большого квадрата (построенного на гипотенузе) плюс площадь исходного треугольника. Таким образом, половина суммы площадей маленьких квадратов равна половине площади большого квадрата, а следовательно сумма площадей квадратов, построенных на катетах равна площади квадрата, построенного на гипотенузе.
Теорема косинусов является обобщением теоремы Пифагора. Звучит она так:
«Квадрат стороны произвольного треугольника равен сумме квадратов двух других его сторон без удвоенного произведения одной из этих сторон на взятую на ней проекцию другой». с2=а2+в2-2ав*cosγ. Действительно, если γ=90˚, то cos90˚=0 и с2=а2+в2
8.Применение теоремы Пифагора
В первую очередь теорема Пифагора применяется в школьном курсе математики и курсах смежных дисциплин.
Определю возможности, которые дает теорема Пифагора для вычисления длин отрезков некоторых фигур на плоскости.
Это нахождение диагонали квадрата, диагонали прямоугольника, высоты равностороннего треугольника.
Нахождение в пространстве диагонали куба, диагонали прямоугольного параллелепипеда, нахождение бокового ребра и высоты пирамиды, проходящей через центр основания.
Теорема Пифагора используется также при построении сечений в объемных фигурах, таких как куб, конус и других.
При выводе уравнения окружности.
В строительстве: крыш, окон, молниеотводов, мостов, зданий, различных металлоконструкций; при строительстве любых сооружений рассчитывают расстояния, центры тяжести, размещение опор, балок и т.д. Если, например, рассматривать четырехугольную пирамиду как крышу башни, то речь идет о том, какой длины нужно сделать боковые ребра, чтобы при данной площади чердака была выдержана предписанная высота крыши, а вопрос о величине боковой поверхности должен интересовать, например, кровельщика при подсчете стоимости кровельных работ.
В зданиях готического и ромaнского стилей верхние части окон расчленяются каменными ребрами, которые не только играют роль орнамента, но и способствуют прочности окон.
В рассмотренном примере радиусы находились без всяких затруднений. В других аналогичных примерах могут потребоваться вычисления. В романской архитектуре часто встречается мотив, представленный на рисунке.
Также свое применение теорема Пифагора нашла в работах по астрономии и космонавтики при изучении пути светового луча, сигнала. Изначально она использовалась при определении расстояния до различных звезд, галактик.
В конце девятнадцатого века высказывались разнообразные предположения о существовании обитателей Марса, подобных человеку. Естественно, что вопрос о том, можно ли с помощью световых сигналов объясняться с этими гипотетическими существами, вызвал оживленную дискуссию. В шутку, хотя и не совсем безосновательно, было решено передать обитателям Марса сигнал в виде теоремы Пифагора . Неизвестно, как это сделать, но для всех очевидно, что математический факт, выражаемый теоремой Пифагора, имеет место всюду и поэтому похожие на нас обитатели другого мира должны понять такой сигнал.
Немаловажную роль имеет она и в мобильной связи. Чем надежнее связь, тем больше потребителей. Например, нужно определить какую наибольшую высоту должна иметь антенна, чтобы передачу можно было принимать в определенном радиусе.
В Германии недавно открылся кинотеатр, где показывают кино в шести измерениях: первые три даже перечислять не стоит, а также время, запах и вкус . Это наглядно говорит о том, насколько быстро увеличивается количество измерений, используемых человечеством. Ведь еще совсем недавно никто и не говорил о более чем трех измерениях в кино. Вы спросите: « А как связаны между собой теорема Пифагора и запахи, вкусы?» А все очень "просто": ведь при показе кино надо рассчитать, куда и какие запахи направлять и т.д. Представьте: на экране показывают джунгли, и вы чувствуете запах листьев, показывают обедающего человека, а вы чувствуете вкус еды... Захватывает? Конечно да, и это говорит о том, насколько много направлений деятельности еще будет у теоремы Пифагора и теорем, связанных с ней. Но не надо думать, что теорема Пифагора больше не имеет других значений. Из того, что я уже сказал, надо сделать вывод, что все эти технологии используются также и в других отраслях.
III. Заключение. Выводы. Результаты исследования.
Вцелом, значение теоремы, кроме вышесказанного, заключается в том, что она применяется практически во всех современных технологиях, а также открывает простор для создания новых. Я считаю, что за теоремой Пифагора следует великое будущее многих открытий, которыми человечество потрясет весь мир. С помощью своих исследований я установила, что вокруг личности Пифагора образовалось много легенд, так что мне трудно судить как о доле вымысла в них, так и о степени соответствия действительности.
Возможно значение теоремы Пифагора состоит в том, что из нее или с ее помощью можно вывести большинство теорем геометрии и решить множество задач. Из-за этого многие ученые называют эту теорему самой главной в геометрии. Теорема Пифагора - фундамент, базис, основа всех математических вычислений, расчетов и многих изобретений. Творческая работа по изучению биографии Пифагора и математического наследия позволила в корне изменить все мои взгляды на этого великого и гениального ученого древности.
Я провела социологический опрос. В опросе приняли участие группа учеников ЦДО, тьюторы, учителя, техники нашей школы, откликнулись на мои вопросы в социальных сетях Вконтакте и одноклассниках. Опрошены 31 человек. Из них практически все знакомы с высказыванием «Пифагоровы штаны во все стороны равны» (90%). Смогли дать точную формулировку теоремы 74% опрошенных. Рассказали о Пифагоре, как об ученом, философе, основателе школы пифагорейцев 61%опрошенных. Нашли применение теоремы Пифагора в практической деятельности 71%.
По данному опросу можно сделать вывод о том, что большое количество опрошенных знакомо с именем Пифагора, теоремой Пифагора и знают где можно применить в практической деятельности теорему. Это еще раз говорит об актуальности данной темы.
Именинный пирог
Два плуга
Ель
О чем поет Шотландская волынка?
Лев Николаевич Толстой. Индеец и англичанин (быль)