В мире уравнений
Дробкова Анна,
СОШ №41 с.Аксаково,
10 класс
Кто и когда придумал первое уравнение? Ответить на этот вопрос, невозможно.
Теория уравнений интересовала и интересует математиков всех времен и народов. Задачи, сводящиеся к простейшим уравнениям, люди решали на основе здравого смысла с того времени, как они стали людьми. А учебные задачи, которые мы сегодня решаем при помощи уравнений, были хорошо известны еще в Древнем Вавилоне и Древнем Египте, Древнем Китае, Древней Индии и Древней Греции. Выделение алгебры в самостоятельную ветвь математики произошло в арабских странах, куда после распада Римской империи переместился центр научной деятельности. Там появился трактат «Китаб аль-джебр валь-мукабала», в котором были даны общие правила для решения уравнений первой и второй степени. Это сочинение оказало большое значение на развитие математики в Европе, а само слово «аль-джебр», входившее в название книги, постепенно стало названием науки -алгебра –области математики, связанной с искусством решения уравнений.
Выбор темы моего исследования не случаен, т.к. решение уравнений - едва ли не самый распространенный тип экзаменационных задач. На протяжении всех лет обучения в школе мы решаем уравнения, но школьный курс алгебры предусматривает ограниченный набор уравнений. Я умею, без ограничений, решать уравнения первой и второй степени, умею так же решать биквадратные уравнения и особого интереса к ним не проявляю. Интересны уравнения больших степеней. Поэтому объектом моего исследования стали уравнения высших степеней. Цель моей работы заключается в поиске методов решения уравнений произвольных степеней.
Под уравнениями высших степеней понимаются уравнения вида f(х)=0,где f(х)- многочлен степени выше двух. Это может быть кубическое уравнение aх3+bх2+cх+d=0 или уравнение четвертой степени aх4+bх3+cх2+dх+e=0, или уравнение пятой степени, и так далее. Среди них есть такие, решения которых сводятся, как правило, к квадратному уравнению, либо к определенным формулам Виета, Кардано, Феррари. Наиболее общий прием решения уравнений произвольной степени опирается на теорему Безу или ее следствия.
Таким образом, изучив научно-популярную литературу по данной теме, я выяснила, что корни любого уравнения не выше четвертой степени выражаются через коэффициенты уравнения формулой, в которой используются только четыре арифметические операции и извлечение корней степени, не превышающей степень уравнения. Более того, все уравнения не выше четвертой степени можно «обслужить» одной общей формулой. При подстановке в нее коэффициентов уравнения получим все корни. Общей формулы, применимой ко всем уравнениям пятой степени и выше, не существует. Но имеются специальные вычислительные методы, позволяющие найти корни любого уравнения с любой наперед заданной точностью, ничуть не меньшей, чем дают вычисления по готовым формулам, т.к. в прикладных задачах нас интересуют только приближенные значения корней уравнения, а его разрешимость в радикалах здесь обычно роли не играет.
Настоящая работа будет полезна любознательным школьникам, а так же может служить справочным учебным пособием для выпускников школы. Она позволит улучшить подготовку и математический кругозор в решении уравнений произвольных степеней.
Вложение | Размер |
---|---|
nauchnaya_rabota._drobkova_anya.rar | 2.8 МБ |
Муниципальное бюджетное общеобразовательное учреждение
средняя общеобразовательная школа №41 с. Аксаково
муниципального района Белебеевский район РБ
В мире уравнений
Дробкова Анна
МБОУ СОШ№41 с. Аксаково
10 класс
Научный руководитель
Андреева Зинаида Маркеловна
учитель математики
Белебей, 2009
Содержание
с
Введение 3-4
1 Алгебра – наука о решении уравнений 5-6
2 Уравнения высших степеней
2.1 Кубические уравнения 7
2.2 Уравнения четвертой степени 8
2.3 Симметрические уравнения четвертой степени 9
2.4 Уравнения высоких степеней
2.5 Алгебраические уравнения и группы Галуа 10
3 Методы решения уравнений высших степеней
3.1 Разложение многочлена на множители 11
3.2 Метод введения параметра 12
3.3 Метод введения новой переменной
3.4 Комбинирование различных методов 13
3.5 Методы решения симметрических уравнений 3-й и 4-й степеней 14
3.6 Теорема Безу и ее следствия
3.7 Метод Кардано 16
3.8 Метод Феррари 17
3.9Теорема Виета 18-19
Заключение 20
Библиография 21
Приложение 22 2
Кто и когда придумал первое уравнение? Ответить на этот вопрос невозможно. Теория уравнений интересовала и интересует математиков всех времен и народов.
«Можно утверждать, что решение полиномиальных уравнений послужило исторически источником алгебры и что со времен вавилонян, индусов и Диофанта и до наших дней оно остается одной из основных целей» - эти слова французских математиков А. Гротендик (род. 1928) и Ж. Дьедоне (род. 1906), точки зрения которых придерживаются и современные ученые на содержание алгебры.
Выбор темы моего исследования тоже не случаен, так как решение уравнений - самый распространенный тип экзаменационных задач. На протяжении всех лет обучения в школе мы решаем уравнения, но школьный курс алгебры предусматривает ограниченный набор уравнений. Я умею, без ограничений, решать уравнения первой и второй степени и особого интереса к ним не проявляю. Интересны уравнения больших степеней.
Под термином «уравнения высших степеней» понимаются уравнения вида f(x)=0, где f(x)- многочлен степени выше двух. Это может быть кубическое уравнение aх3 +вх2 +cх+d=0 или уравнение четвертой степени ах4 +bх3 +сх2 +dх+е=0, или уравнение пятой степени, и так далее. Среди них есть такие уравнения, решения которых сводятся, как правило, к линейным и квадратным по хорошо известным методам. Это разложение на множители многочлена f(х) и введение новой переменной. Но вызвал большой интерес нелинейные уравнения общего вида, решения которых невозможно найти указанными методами. Передо мной встал вопрос: существуют ли другие способы решения уравнений высших степеней? Не попытаться ли, как это делается в математике, отыскать общую формулу, пригодную для решения любых уравнений?
Материал исследования составляют теоретические и практические стороны решения уравнений высших степеней.
Объект исследования- уравнения высших степеней.
Предмет исследования - научно-популярная литература по математике.
3. Цель и задачи исследования
Цель исследования - найти методы решения уравнений высших степеней.
Общая цель исследования определяет конкретные задачи:
-изучить научно-популярную литературу по данной теме;
-выяснить существование специальных методов решения уравнений произвольной степени;
-установить, существует ли формула, выражающая корни любого алгебраического уравнения через конечное число алгебраических операций над его коэффициентами;
-на практике убедиться в правильности данных методов.
4. Практическая значимость исследования.
Материал данного исследования имеет практическую значимость и будет полезна любознательным школьникам, а так же выпускникам школы. Она позволит улучшить подготовку и расширить математический кругозор в решении уравнений произвольных степеней.
5. Методы исследования
Основными методами исследования являются:
-описательные;
-практические;
-проблемно- поисковые.
1 Алгебра – наука о решении уравнений
Алгебра-часть математики, которая изучает общие свойства действий над различными величинами и решение уравнений, связанных с этими действиями. История алгебры уходит своими корнями в древние времена. Задачи, связанные с уравнениями решались еще в Древнем Египте и Вавилоне. Древние египтяне излагали свои алгебраические познания в числовой форме, не применяли буквенной символики. Путем проб и ошибок числа в условиях задач подбирались так, чтобы получались «хорошие» ответы (натуральные). Других чисел древние египтяне не знали. Более сложные задачи умели решать в Древнем Вавилоне. Там решались уравнения первой, второй и даже отдельные уравнения третьей степени. При этом вавилоняне так же не использовали букв, а излагали решения задач в словесной форме. Способы решения конкретных уравнений дают основание считать, что вавилоняне владели общими правилами нахождения корней уравнений первой и второй степени. Если при решении уравнения надо было извлекать квадратный корень из числа, не являющегося точным квадратом, находили приближенное значение корня. Но эти достижения еще нельзя было назвать наукой, т.к. не было общей теории.
Совсем другой вид приняла алгебра в Древней Греции. Все алгебраические утверждения выражали в геометрической форме. Древнегреческие математики работали не с числами, а с отрезками. Поэтому найти неизвестное для них означало построить отрезок. Большинство задач решалось путем построения циркулем и линейкой, но не все задачи поддавались такому решению. Ведь геометрически можно выразить лишь первые степени (длины), квадраты (площади) и кубы (объемы), но не высшие степени неизвестных. Геометрический путь решения уравнений был гениальной находкой античных математиков, но он сдерживал развитие алгебры. Алгебраические методы, ростки которых возникли в более ранних цивилизациях, в Древней Греции не получили развития.
Выделение алгебры в самостоятельную ветвь математики произошло в арабских странах, куда после распада Римской империи переместился центр научной деятельности. В Багдаде был создан «Дом мудрости», куда по воле халифа собрали образованных людей со всех сторон халифата. Эти мудрецы не только переводили труды своих великих предшественников, но и творили сами. Одним из них был Мухаммед бен Мусса аль- Хорезми. Наиболее значительным его трудом является трактат по алгебре, в котором впервые были разработаны правила преобразования уравнений. Уравнения у него, конечно, были с числовыми коэффициентами и выражались в словесной форме. Но на этих конкретных примерах он показывает способы решения основных типов линейных и квадратных уравнений. В греческих традициях строго геометрически обосновывает свои способы. Любое уравнение должно было быть преобразовано к одному из рассмотренных видов с помощью двух операций: 1) восполнение-перенесение отрицательных членов уравнения в другую часть; 2)противопоставление-приведение подобных членов. Это сочинение, которое по-арабски называется «Китаб аль-джебр вак-мукабала» оказало большое влияние на развитие математики в Европе, а само слово «аль-джебр», входившее в название книги, постепенно стало названием науки – алгебра ( области математики, связанной с искусством решения уравнений).
Итак, решать линейные и квадратные уравнения можно, не записывая каких-либо формул, не зная буквенных обозначений, а только лишь хорошо запомнив многочисленные правила. Но при решении уравнений третьей, четвертой и более высоких степеней без настоящей алгебры двигаться было трудно.
Для математиков, уже умевших - после вавилонян, Евклида и аль - Хорезми –решать линейные и квадратные уравнения, самым желанным было научиться решать уравнения третьей степени (кубические).
2 Уравнения высших степеней
2.1 Кубические уравнения
В 11 веке известный поэт, астроном и математик Омар Хайям без буквенной символики и отрицательных чисел описал все возможные виды уравнений третьей степени и рассмотрел геометрический способ их решения.. Занимался кубическими уравнениями и его современник арабский энциклопедист ал–Бируни. Корни уравнений третьей степени они строили при помощи пересечения парабол, гипербол, окружностей, каким способом решали задачи и греческие геометры. Но арабов, чья математика тяготела к вычислениям, интересовало и численное значение корней. Многие ученые пытались найти правило вычисления корней кубического уравнения, но потерпели неудачу.
Все кубические уравнения являются разновидностями уравнения самого общего вида, т.е. уравнения вида
аx3 + bx2 + cx + d =0, где а≠0
Со времен Омара Хайяма ученые средневековья почти 400 лет искали формулу для решения уравнения третьей степени. Были периоды, когда начинало казаться, что сил человеческого ума для решения этой задачи недостаточно. В конце ХV века профессор математики в университетах Рима и Милана Лука Пачоли в своём знаменитом учебнике «Сумма знаний по арифметике, геометрии, отношениям и пропорциональности» задачу о нахождении общего метода решения кубических уравнений ставил в один ряд с задачей о квадратуре круга. И все же усилиями итальянских алгебраистов Даля Ферро, Никколо Тартальей, Джероламо Кардано вскоре такой метод был найден- выделение полного куба. Д.Кардано написал большую книгу, посвященную алгебре. Главным украшением этой книги и была «формула Кардано», как ее называют теперь. Но формулу Кардано нельзя применять без учета некоторых дополнительных условий и ограничений. Пусть практическое значение этих формул невелико-трудно переоценить тот мощный импульс, который они дали развитию современной алгебры.
Важный вклад в развитии науки внес французский математик Франсуа Виет. Пытаясь решить задачу, каким образом корни уравнения выражаются через коэффициенты, он записал систему равенств. Отыскивая одно, он придумал другое: обозначить буквами не только неизвестные, но и коэффициенты при них. Путем преобразований Ф.Виет доказал, что второй коэффициент данного уравнения приведенного вида равен сумме корней уравнения, взятой с противоположным знаком, третий коэффициент равен сумме попарных произведений корней уравнения, четвертый коэффициент равен сумме всех возможных произведений корней уравнения по три, взятой с противоположным знаком и т.д., свободный член уравнения равен произведению всех корней уравнения, умноженному на (-1)n. Эта связь коэффициентов уравнения приведенного вида с его корнями называется обобщенной теоремой Виета. Она позволяет более легко составлять уравнения по их корням. Хотя буквенная символика Виета обладала некоторыми недостатками, тем не менее это был огромный шаг вперед, до него в математике не было формул. Недаром Виета часто называют «отцом алгебры».
2.2 Уравнения четвертой степени
Метод решения уравнений четвертой степени нашел в ХVI в. Лудовико Феррари, ученик Джероламо Кардано. Он так и называется - метод Феррари.
Как и при решении кубического и квадратного уравнений, в уравнении четвертой степени
x4 +px3 +qx2+rx+s=0
можно избавиться от члена px3 подстановкой x=y-p/4. Поэтому будем считать, что коэффициент при кубе неизвестного равен нулю:
x4+ax2+bx+c=0.
Идея Феррари состояла в том, чтобы представить уравнение в виде А2=В2, где левая часть- квадрат выражения А=x2+s, а правая часть- квадрат линейного выражения В от х, коэффициенты которого зависят от s. После этого останется решить два квадратных уравнения: А=В и А=-В. Конечно, такое представление возможно только при специальном выборе параметра s.
2.3 Симметрические уравнения четвертой степени
Если уравнение имеет вид Р(Q(x))=0, где Р и Q- многочлены, то замена y=Q(x) сводит его решение к решению двух уравнений меньших степеней: Р(y)=0 и Q(x)=y. Замена используется, в частности, при решении биквадратных уравнений.
Более интересный случай- возвратные уравнения, т.е. уравнения четвертой степени
a2nx2n+a2n-1x2n-1+…+a1x+a0=0,
в которых коэффициенты, одинаково отстоящие от концов, равны: a2n = a0, a2n-1=a1 и т.д. Такое уравнение сводится к уравнению вдвое меньшей степени делением на xn и последующей заменой y=x±1/x.
При решении возвратных уравнений более высоких степеней обычно используют тот факт, что выражение xk+1/xk при любом k можно представить как многочлен степени k от y=x+1/x.
2.4 Уравнения высоких степеней
Формула корней квадратного уравнения известна с незапамятных времен, а в XVI в. итальянские алгебраисты решили в радикалах уравнения третьей и четвертой степеней. Таким образом, было установлено, что корни любого уравнения не выше четвертой степени выражаются через коэффициенты уравнения формулой, в которой используются только четыре арифметические операции (сложение, вычитание, умножение, деление) и извлечение корней степени не превышающей степень уравнения. Более того все уравнения данной степени n(n≤4) можно «обслужить» одной общей формулой. При подстановке в нее коэффициентов уравнения получили все корни - и действительные, и комплексные.
После этого естественно возник вопрос: а есть ли похожие общие формулы для решения уравнений пятой степени и выше? Ответ на него смог найти норвежский математик Нильс Хенрик Абель вначале XIX в. Чуть раньше этот результат был указан, но недостаточно обоснован итальянцем Паоло Руффини. Теорема Абеля - Руффини звучит так:
Общее уравнение степени n при n≥5 неразрешимо в радикалах.
Таким образом, общей формулы, применимой ко всем уравнениям данной степени n≥5, не существует.
Хотя уравнения высоких степеней неразрешимо в радикалах, да и формулы Кардано и Феррари для уравнений третьей и четвертой степеней в школе не проходят, в учебниках по алгебре, на вступительных экзаменах в институты иногда встречаются задачи, где требуется решить уравнение выше второй степени. Обычно их специально подбирают так, чтобы корни уравнений можно было найти с помощью некоторых элементарных приемов.
2.5 Алгебраические уравнения и группы Галуа
Теория Галуа позволяет выяснить для любого конкретного уравнения, решается ли оно в радикалах. Для этого данному уравнению сопоставляется некоторая группа перестановок его корней. Важно, что эту группу, названную сейчас группой Галуа, можно определить, не вычисляя корней уравнения, только по его коэффициентам. Галуа установил связь между разрешимостью алгебраического уравнения в радикалах и особым свойством группы этого уравнения, которое также было названо разрешимостью. В частности, любая коммутативная группа разрешима. Если коэффициенты уравнения рациональны и его левая часть не разлагается на множители с рациональными коэффициентами (неприводима), то это уравнение разрешимо в радикалах только тогда, когда разрешима его группа Галуа.
Например, уравнение x5 - 4x + 2=0 имеет пять различных корней. Хотя они нам неизвестны, можно показать, что группа Галуа данного уравнения совпадает с группой всех перестановок его пяти корней - это самая «большая» из возможных групп для уравнений пятой степени. Доказывается, что эта группа неразрешима. Следовательно, корни данного уравнения не выражаются в радикалах, а значит, общей формулы для решения уравнений пятой степени в радикалах не существует.
3 Методы решения уравнений высших степеней
3.1 Разложение многочлена на множители
При решении алгебраических уравнений часто приходится разлагать многочлен на множители. Разложить многочлен на множители - это значит представить его в виде произведения двух или нескольких многочленов. Некоторые методы разложения многочленов мы употребляем достаточно часто: вынесение общего множителя, применение формул сокращенного умножения, выделение полного квадрата, группировка. Рассмотрим ещё некоторые методы.
Иногда при разложении многочлена на множители бывают полезными следующие утверждения:
Многочлен Рn-1(х) можно найти либо делением многочлена Рn(х) на двучлен (х-а) «столбиком», либо соответствующей группировку слагаемых многочлена и выделением из них множителя х-а, либо методом неопределенных коэффициентов.
Пример. Разложить на множители многочлен
х4-5х3+7х2-5х+6
Решение. Поскольку коэффициент при х4 равен 1, то рациональные корни данного многочлена, существуют, являются делителями числа 6, т.е. могут быть целыми числами ±1, ±2, ±3, ±6. Обозначим данный многочлен через Р4(х). Так как Р4(1)=4 и Р4 (-4)=23, то числа 1 и -1 не являются корнями многочлена РА(х). Поскольку Р4(2)=0, то х=2 является корнем многочлена Р4(х), и, значит, данный многочлен делится на двучлен х-2.
Поэтому
х4-5х3+7х2-5х+6 х-2
х4-2х3 х-3х+х-3
-3х+7х-5х+6
-3х+6х
х-5х+6
х-2х
-3х+6
-3х+6
0
Следовательно, Р4(х)= (х-2)( х-3х+х-3). Так как х-3х+х-3 =
= х2(х-3)+(х-3)= (х-3)(х2+1), то х4-5х3+7х2-5х+6=(х-2)(х-3)(х2+1).
3.2 Метод введения параметра
Иногда при разложении многочлена на множители помогает метод введения параметра. Суть этого метода можно пояснить на следующем примере.
Пример. х3-(√3+1)х2+3.
Решение: рассмотрим многочлен с параметром а:
х3-(√а+1)х2+а2,
который при а=√3 превращается в заданный многочлен. Запишем этот многочлен как квадратный трехчлен относительно а:
а3-ах2+(х3-х2).
Так как корни этого квадратного относительно а трехчлена есть а1=х и а2=х2-х, то справедливо равенство а2-ах2+(х3-х2) = (а-х)(а-х2+х). Следовательно, многочлен х3-(√3+1)х2+3 разлагается на множители √3-х и √3-х2+х, т.е.
х3-(√3+1)х2+3=(√3-х)( х2-х-√3).
3.3 Метод введения новой переменной
В некоторых случаях путем замены выражения f(х), входящего в многочлен через у можно получить многочлен относительно у, который уже легко разложить на множители. Затем после замены у на f(х) получаем разложение на множители многочлена Рn(х).
Пример: разложить на множители многочлен
х(х+1)(х+2)(х+3)-15.
Решение: преобразуем данный многочлен следующим образом:
(х+1)(х+2)(х+3)-15== (х2 +3х)( х2 +3х+2)-15.
Обозначим х2 +3х через у. тогда имеем
у(у+2)-15=у 2+2у+1-16=(у+1)2-16=(у+1+4)(у+1-4)=(у+5)(у-3).
Поэтому
х(х+1)(х+2)(х+3)-15=( х2 +3х+5)( х2 +3х-3).
Пример: разложить на множители многочлен (х-4)4+(х+2)4
Решение: обозначим =х-1 через у.
Тогда (х-4)4+(х+2)4=(у-3)4+(у+3)4=у4-12у3+54у3-108у+81+у4+12у3+54у3+108у+81=
=2у4+108у2+162=2(у4+54у2+81)=2((у2+27)2-648)=2(у2+27-√648)(у2+27+√684)=
=2((х-1)2+27-√684)((х-1)2+27+√684)=2(х2-2х+28-18√2)( х2-2х+28+18√2).
3.4 Комбинирование различных методов
Часто при разложении многочлена на множители приходится применять последовательно несколько из рассмотренных выше методов.
Пример: разложить на множители многочлен
х4-3х2+4х-3.
Решение: Применяя группировку, перепишем многочлен в виде
х4-3х2+4х-3=( х4-2х2)-(х2-4х+3).
Применяя к первой скобке метод выделения полного квадрата, имеем:
х4-3х2+4х-3=(х4-2∙1∙х2+1)(х2-4х+4).
Применяя формулу полного квадрата, можно теперь записать, что:
х4-3х2+4х-3=(х2-1)2-(х-2)2.
Наконец, применяя формулу разности квадратов, получим, что:
х4-3х2+4х-3=( х2-1+х-2)( х2-1-х+2)=( х2+х-3)(х2-х+1).
3.5 Решение симметрических уравнений третьей и четвертой степеней
а) решение симметрических уравнений третьей степени.
Пример: решить уравнение 3х3+4х2+4х+3=0.
Решение: это уравнение является симметрическим уравнением третьей степени.
Поскольку 3х3+4х2+4х+3=3(х3+1)+4х(х+1)=(х+1)(3х2-3х+3+4х)=
=(х+1)(3х2 +х+3), то данное уравнение равносильно совокупности уравнений
Х+1=0 и 3х2 +х+3=0.
Решение первого из этих уравнений есть х= -1, второе уравнение решений не имеет.
Ответ: х= -1.
б) решение симметрических уравнений четвертой степени.
Пример: решить уравнение х4-5х3+8х2-5х+1=0.
Решение: Данное уравнение является симметрическим уравнением четвертой степени. Так как х=0 не является его корнем, то, разделив данное уравнение на х2, получим равносильное ему уравнение:
х2-5х+8-5/х+1/х2=0
Сгруппировав слагаемые, перепишем уравнение в виде
х2+1/х2-5(х+1/х)+8=0
или в виде
(х+1/х)2-5(х+1/х)+6=0
Заменив х+1/х на у, получим уравнение
у2-5у+6=0,
имеющее два корня у1=2 и у2=3. Следовательно, исходное уравнение равносильно совокупности уравнений х+1/х=2 и х+1/х=3.
Решение первого уравнения этой совокупности есть х=1, а решение второго есть х и х3= .
Следовательно, исходное уравнение имеет три корня: х, х, х3.
Ответ: 1; ;.
3. 6 Теорема Безу и ее следствия.
Наиболее общий прием решения уравнений высших степеней опирается на теорему Безу и ее следствия. Рассмотрим эту теорему и её следствия.
Пусть имеем многочлен М(х)=а0хn+а1хn-1+…+an, целый относительно х, т.е. многочлен с целыми неотрицательными показателями х, х-а- двучлен. Тогда теорема Безу утверждает:
Остаток от деления многочлена, целого относительно х, на двучлен х-а равен значению многочлена при х=а.
Если разделить многочлен М(х) на х-а, то в частности получится многочлен Q(x), степень которого на 1 меньше степени многочлена М(х), и некоторый остаток R. Очевидно, что остаток R не содержит х, т.е равен постоянному числу, так как степень остатка меньше степени делителя.
Тогда М(х)=(х-а)Q(х)+R. Это равенство верно при любом значении х. Оно является тождеством. Положим в нем х=а. Получим:
М(а)=(а-а)Q(а)R,
т.е М(а)=R, R= М(а). Теорема доказана.
Значение а, при котором R=0, называется корнем многочлена М(х). Оно является и корнем уравнения М(х)=0, так как М(а)=0.
Основная теорема алгебры утверждает, что любой многочлен с числовыми коэффициентами, целый относительно х, имеет по крайней мере один корень х1. Из теоремы Безу в этом случае следует, что М(х)=(х- х1) Q(x),где степень многочлена Q(x) на 1 меньше степени многочлена М(х). Заменим в уравнении М(х)=0 левую часть произведения (х- х1) Q(x). Получим (х- х1) Q(x)=0. Приравнивая к нулю множитель х- х1 , получим уже найденный корень х1. Приравняем к нулю второй множитель Q(x)=0. Рассуждая аналогично предыдущему, получим, что последнее уравнение имеет хоть один корень х2. Тогда левую часть уравнения Q(x)=0 можно заменить произведением (х-х2)Q1(х)=0, где Q1(х)-многочлен степени n-2. Продолжая рассуждать дальше, убеждаемся, что уравнение n-й степени имеет ровно n действительных или мнимых корней.
Если все коэффициенты в уравнении - действительные числа, то каждый мнимый корень уравнения обязательно имеет сопряженный ему корень этого уравнения, т.е. если уравнение с действительными коэффициентами имеет корень х1=а+bi, то оно имеет и корень х2=а-bi.
Пример: решить уравнение х4-3х3-8х2+12х+16=0.
Решение: выписываем делители свободного члена 16:
±1,±2, ±4, ±8, ±16.
При х=1 в левой части уравнения получим 1-3-8+12+16≠0. Единица не является корнем уравнения.
Проверим х=-1. Левая часть уравнения будет равна 1+3-8-12+16=0, х1= -1-корень уравнения.
Делим левую часть уравнения на х-х1=х+1:
х4-3х3-8х2+12х+16 х+1
± х4± х3 х3-4х2-4х+16
-4 х3-8х2
±4 х3±4х2
-4х2+12х
±4х2±4х
16х+16
16х+16
0
Приравниваем к нулю полученное частное:
х3-4х2-4х+16=0.
Проверяем, является ли х=2 корнем этого уравнения:
8-16-8+16=0, т.е. х2=2 – корень этого уравнения.
Ответ. {-1; -2; 2; 4}.
3.7 Метод Кордано
Данным методом решаются лишь уравнения вида х3 + рх + q = 0
Используем формулу куба суммы: (a + b)3 = a3 + 3a2b + b3 = a3 + b3 + 3ab·(a + b)
Заменим (а + b) на х:
х3 – 3abx – (a3 – b3) = 0
Исходное уравнение равносильно системе уравнений:
а3 + b3 = -q
3ab = - p
Эту систему можно решать по-разному, но результат один:
Это и есть формула Кардано, часто использующаяся при решении кубических уравнений, когда обычные методы не помогают.
Пример. Решим уравнение х3 + 15х + 124 = 0
Решение. Имеем p = 15, q = 124.
Ответ. -4
3.8 Метод Феррари
х4 + dx3 + ax2 + bx + c = 0
Избавляемся от dx3 подстановкой
х4 + ах2 + bx + с = 0.
Идея в том, чтобы представить уравнение в виде А2=В2, где А = х2 + s, а В – линейная функция от х. Тогда останется решить уравнение А = ± В.
Возьмем Тогда, учитывая исходное равенство, получим:
Пусть t0 – корень последнего уравнения. Тогда при t = t0 правая часть-квадрат:
Получили систему:
Решив эту систему, мы найдем решение исходного уравнения.
Это и есть метод Феррари.
Пример. х4 + 8х3 + 11 = 68х
Решение. Добавив к обеим частям уравнения 16х2 и перенеся свободный член вправо, перепишем уравнение следующим образом:
(х2+4х)2=16х2+68х-11
Введем неизвестное t и добавим к обеим частям уравнения выражение t2-2(х2+4х)t.
Получим:
( х2 + 4х – t)2 = ( 16 - 2t)х + ( 68 - 8t)х - ( 11 – t2).
Левая часть уравнения является квадратом. Найдем такое значение t, при котором квадратный трехчлен от х, стоящий в правой части, тоже является полным квадратом. Для этого нужно, чтобы дискриминант квадратного трехчлена равнялся нулю, т.е. чтобы выполнялось равенство
( 34 - 4t)2 + (16 - 2t) (1 1 – t2) = 0.
Раскрыв в нем скобки, придем к кубическому уравнению
t3 – 147t + 666 = 0, где t = 6 –корень уравнения.
При t = 6 исходное уравнение принимает вид:
( х2 + 4х – 6 )2 = ( 2х + 5 )2.
Значит, х2 + 4х – 6 = ±(2х + 5).
Решая оба получившихся уравнения, найдем четыре корня данного уравнения:
3.9 Теорема Виета
х3 + px2 + qx + r = 0
Если х1, х2, х3 – корни уравнения, то его можно записать в виде
(х – х1)·(х – х2)·(х – х3) = 0
Преобразуем, раскрыв скобки:
х3 – (х1 + х2 + х3)х2 + (х1х2 + х1х3 + х2х3)х – х1х2х3 = 0
Имеем возможность вместо одного уравнения третьей степени записать такую систему из трех уравнений:
Пример. х3 + 2х2 - 5х -6 = 0
Решение. Имеем p = 2, q = - 5, r = - 6
Ответ. -3, -1, 2.
Заключение
Проведенная работа по теме «В мире уравнений» дала мне возможность глубоко вникнуть в область решения уравнений высших степеней. Изучив научно-популярную литературу, я выяснила существование специальных методов их решения. На основании результатов исследования я установила, что корни любого уравнения не выше четвертой степени выражаются через коэффициенты уравнения формулой, в которой используются только четыре арифметические операции и извлечение корней степени, не превышающей степень уравнения. Более того, все уравнения не выше четвертой степени можно «обслужить « одной формулой. При подстановке в нее коэффициентов уравнения получим все корни: действительные и мнимые. Также я выяснила, что общей формулы, применимой ко всем уравнениям пятой степени и выше, не существует. Но имеются специальные вычислительные методы, позволяющие найти корни любого уравнения с любой наперед заданной точностью, ничуть не меньшей, чем дают вычисления по готовым формулам, т.к. в прикладных задачах нас интересуют только приближенные значения корней уравнения. На практике убедилась в том, что решение высших уравнений сводятся, как правило, к квадратному, либо к определенным формулам Виета, Кардано, Феррари. Наиболее общий прием решения уравнений произвольной степени опирается на теорему Безу.
В ходе своего исследования я сделала некоторые выводы:
1)алгебра - область математики, связанная с искусством решения уравнений;
2)Мухаммед бен Муса аль- Хорезми – основоположник алгебры;
3)Франсуа Виет – создатель алгебраической символики;
4)уравнения 2-й, 3-й, 4-й степеней можно решить с помощью формул;
5)уравнения 5-й степени и выше не разрешимы в радикалах, т.е. не существует общей формулы для их решения.
6)существуют удивительные квадратные корни из отрицательных чисел - мнимые числа, которые являются корнями уравнений.
Думаю, моя работа имеет практическую значимость: будет полезна любознательным школьникам и выпускникам школы, позволит рационально использовать время при подготовке к олимпиадам и экзаменам, может служить справочным учебным пособием.
Библиографический список
1. Виленкин Н.Я. и др. За страницами учебника математики: Арифметика. Алгебра. Геометрия: Кн. Для учащихся 10-11 кл.- М.: Просвещение: АО «Учеб. лит.», 1996.
2. Петраков И.С.Математика для любознательных: Кн. Для учащихся 8-11 кл.- М.: Просвещение, 2000.
3. Пичурин Л.Ф.За страницами учебника алгебры: Кн.для учащихся 7-9 кл.- М.: Просвещение, 1990.
4. Тырымов А.А.Математика для поступающих в ВУЗы.Ч.2.Способы решений основных типов задач, предлагаемых на письменных экзаменах. Системы уравнений и неравенств, задачи на составление уравнений.- Волгоград: Учитель, 2000.
5. Хазанкин Р.Г. и др. Математическая подготовка и развитие школьников в условиях ЕГЭ.-Уфа: НОУ «Уральский РЭК», 2004.
6. Цыпкин А.Г., Пинский А.И.Справочное пособие по методам решения задач по математике.- М.: Наука. Главная редакция физико-математической литературы, 1983.
7. Энциклопедия для детей. Т.11.Математика /Глав.ред. М.Д.Аксенова.-М.: Аванта+, 2002.
8. Энциклопедический словарь юного математика /Сост. А.П.Савин.-М.: Педагогика, 1985.
9. Юсупова Д.Г. Алгебра: Методические указания по математике для слушателей подготовительных курсов (10 класс)/Уфимск. Гос. Авиац. Техн.ун-т.- Уфа, 1999.
Три коробки с орехами
Колумбово яйцо
Самодельный телефон
Несчастный Андрей
Андрей Усачев. Пятно (из книги "Умная собачка Соня")