Содержание:
а) Софизмы. История Возникновения софизмов.
б) Виды софизмов
в) Логические парадоксы. Понятия и виды.
г) Математический парадокс.
д) Значение и взаимосвязь софизмов и логических парадоксов
Вложение | Размер |
---|---|
uchenicheskaya_rabota.docx | 1 байт |
uchenicheskaya_rabota.docx | 90.27 КБ |
Муниципальный тур окружного конкурса творческих работ учащихся
«Интеллект. Творчество. Фантазия».
Тема: « Парадоксы и софизмы
в математике»
Выполнили: Архипов Петр Михайлович ученик 9 класса
Старо-Семенкинского филиала ГБОУ СОШ с Старый Маклауш
муниципального района Клявлинский
Яковлева Кристина Николаевна ученица 9 класса
Старо-Семенкинского филиал ГБОУ СОШ с Старый Маклауш
муниципального района Клявлинский
Научный руководитель: Карнаухова Наталья Павловна
учитель математики
г. Похвистнево
2013 г
Содержание:
а) Софизмы. История Возникновения софизмов.
в) Логические парадоксы. Понятия и виды.
г) Математический парадокс.
д) Значение и взаимосвязь софизмов и логических парадоксов
Введение.
Тема нашего проекта «Парадоксы и софизмы в математике».
Проблема: Мы очень любим решать задачи и разгадывать математические ребусы, но в математике есть задачи, которые не похожи на другие, они как будто - бы правильные, но в то же время неправильные. Это софизмы и парадоксы! Как найти ошибки в доказательствах , рассуждениях в процессе решения нестандартных задач такого вида?
Цель: Изучить данную тему и создать презентацию
для использования ее на уроках.
Задачи:
Предмет исследования: Математические софизмы и парадоксы Экскурс в Историю
Мы увлеклись темой «Парадоксы и софизмы». Во время работы нам было очень интересно. Поиск заключенных в софизме ошибок, ясное понимание их причин ведут к осмысленному постижению математики и, кроме того, показывает, что математика – это живая наука. Надеемся, что наш проект принесёт пользу ребятам и учителям.
Актуальность темы заключается в том, что разбор софизмов и парадоксов прежде всего развивает логическое мышление, т.е. прививает навыки правильного мышления. Обнаружить ошибку в софизме – это значит осознать ее, а осознание ошибки предупреждает от повторения ее в других математических рассуждениях. Математические софизмы приучают внимательно и настороженно продвигаться вперед, тщательно следить за точностью формулировок, правильностью записей и чертежей, за допустимостью обобщений, за законностью выполняемых операций. Все это нужно и важно нам ученикам при изучении математики. Как приятно бывает обнаружить ошибку в математическом софизме и восстановить истину в ее правах.
Эта тема интересная и содержательная, развивающая познавательный интерес, любознательность к урокам математики, а также реализацию творческого потенциала, создание презентации. В школьном курсе математики не используются софизмы и парадоксы, нет исторического материала о них. Данный материал можно использовать на уроках математики, что расширит кругозор учащихся и покажет значение парадоксов и софизмлви в области математики.
Для создания учебного проекта использовались исторические материал , различные пособия, энциклопедии по математике, а также использовались электронные пособия и Интернет-ресурсы. Проект представлен в виде сборника и презентации, Для создания проекта изучены такие программы как - Power Point 2003. В ходе работы приходилось брать много информации из Интернета, справочной литературы.
Мы начали свой проект с выделения этапов, с помощи которых приступили к выполняемой работе
1 этап - постановка цели и задач исследовательской работы
Первый этап изложен во вводной части работы. Так как цель и задачи поставлены, приступаем ко второму этапу.
2 этап - выявление наиболее изучаемых в школе ученых-математиков
При знакомстве с историческим материалом учебников математики , мы выявили, что не встречается материала о софизмах и парадоксах в
3 этап – сбор исторических данных о софизмах и парадоксах в математике
Для сбора исторических данных были использованы математические пособия, а так же интернет ресурсы. Используя все выше перечисленные источники, мы получили достаточные объём исторических данных о софизмах для использования на уроках математики.
4 этап – обработка собранного материала
Полученный материал требовал обработки, так как имелись данные, трудно воспринимающиеся подростками Для получения исторической статьи нами были использованы все источники информации. Были получены статьи не более одной страницы формата А4.. Полученные статьи следовало поместить в сборнике, посвященному рассмотрения примеров софизмов и парадоксов..
5 этап – создание и оформление сборника с примерами
Так как уже были собраны фрагменты из разных работ с примерами, пополнив ее новыми сведениями, мы приступили к оформлению работы.
6 этап – создание презентации с примерами софизмов и парадоксов
При создании презентации были использованы основные моменты истории, вызывающие особый интерес, краткие сведения о софизмах и парадоксах, и несколько решенных задач. Это достаточно удобная конструкция для ознакомления учеников на уроках или кружках ..
7 этап - подведение итогов и анализ проделанной работы
Работа подходила к завершению: сборник оформлен, презентация создана, следовало переходить к подведению итогов.
Сборник и презентация были созданы таким образом, что могли пополняться новым материалом. Презентация занимала достаточно малое количество времени для ознакомления учеников с софизмами и парадоксами
Работу на данном этапе считаем законченной, цель, при помощи задач, достигнутой. Закончив свой проект, мы можем сказать, что создав сборник софизмов и парадоксов, а так же презентацию, мы достигли намеченной цели при помощи поставленных задач. Мы считаем свою работу актуальной, познавательной и интересной, которая может свободно использоваться на уроках математики и даже информатики. В следующем году мы, может быть, продолжим работу над изучением малоизвестных ученых-математиков, которые занимались парадоксами в математике. Потому что собранный материал может быть «помощником» учителю.
В сборнике содержатся задачи, решение их, а также справочный материал необходимый для решения задач. С помощью презентации учитель может быстро и легко ознакомить учеников с задачами старины.
Анализируя проделанную работу, мы пришли к выводу, что в истории развития математических наук «софизмы и парадоксы» имели большое значение, и решение задач такого типа развивает логику. Считаем нашу исследовательскую работу на данном этапе законченной.
Основная часть
История математики полна неожиданных и интересных софизмов и парадоксов. И зачастую именно их разрешение служило толчком к новым открытиям, из которых в свою очередь произрастали новые софизмы и парадоксы. В истории развития математики софизмы играли существенную роль.
Актуальность темы заключается в том, что именно с появлением софизмов и логических парадоксов зарождались ростки современной логики, которой посвящено множество различной литературы. На современном этапе логика широко изучается.
Софизмы древних нередко использовались с намерением ввести в заблуждение. Но они имели и другую, гораздо более интересную сторону. Очень часто софизмы ставят в неявной форме проблему доказательства. Сформулированные в тот период, когда науки логики еще не было, древние софизмы прямо ставили вопрос о необходимости ее построения. Именно с софизмов началось осмысление и изучение доказательства и опровержения. И в этом плане софизмы непосредственно содействовали возникновению особой науки о правильном, доказательном мышлении.
Формы, в которых проявляется и осознается проблемная ситуация, очень разнообразны. Далеко не всегда она обнаруживает себя в виде прямого вопроса, вставшего в самом начале исследования. Парадоксы есть наиболее интересный случай неявных, безвопросных способов постановки проблем. Парадоксы обычны на ранних стадиях развития научных теорий, когда делаются первые шаги в еще неизученной области и нащупываются самые общие принципы подхода к ней.
Софизмы. История Возникновения софизмов.
Софизмы (греч. sophisma – измышление, хитрость), которые, как уже говорилось, базируются на разнообразных нарушениях логического закона тождества, представляют собой внешне правильные доказательства ложных мыслей. От софизмов следует отличать паралогизмы (греч. Paralogismus – неправильное рассуждение) – логические ошибки, допускаемые непроизвольно, в силу незнания, невнимательности или иных причин.
Софизмы появились еще в Древней Греции. Они тесно связаны с философской деятельностью софистов – платных учителей мудрости, учивших всех желающих философии, логике и, особенно, риторике (науке и искусству красноречия). Одна из основных задач софистов заключалась в том, чтобы научить человека доказывать (подтверждать или опровергать) все, что угодно, выходить победителем из любого интеллектуального состязания. Для этого они разрабатывали разнообразные логические, риторические и психологические приемы. К логическим приемам нечестного, но удачного ведения дискуссии и относятся софизмы. Однако, одних только софизмов для победы в любом споре недостаточно. Ведь если объективная истина окажется не на стороне спорящего, то он, в любом случае, проиграет полемику, несмотря на все свое софистическое искусство. Это хорошо понимали и сами софисты. Поэтому помимо различных логических, риторических и психологических уловок в их арсенале была важная философская идея (особенно дорогая для них), состоявшая в том, что никакой объективной истины не существует: сколько людей, столько и истин. Софисты утверждали, что все в мире субъективно и относительно. Если признать эту идею справедливой, то тогда софистического искусства будет вполне достаточно для победы в любой дискуссии: побеждает не тот, кто находится на стороне истины, а тот, кто лучше владеет приемами полемики.
Софистам идейно противостоял знаменитый греческий философ Сократ, который утверждал, что объективная истина есть, только неизвестно точно, какая она, что собой представляет; в силу чего задача каждого думающего человека заключается в том, чтобы искать эту единую для всех истину.
Дискуссия между софистами и Сократом о существовании объективной истины зародилась приблизительно в V в. до н.э. С тех пор она продолжается до настоящего времени. Среди наших современников можно встретить немало людей, которые утверждают, что ничего объективного и общезначимого нет, что все одинаково подтверждаемо и опровержимо, что все относительно и субъективно. «Сколько людей, столько и мнений», – говорят они. Это, несомненно, точка зрения древних софистов. Однако и в нынешнюю эпоху есть те, которые вслед за Сократом считают, что, хотя мир и человек сложны и многогранны, тем не менее, нечто объективное и общезначимое существует, точно так же, как существует солнце в небе одно – для всех. Они утверждают, что если кто-то не замечает объективной истины, то это вовсе не означает, что ее нет, точно так же, как если кто-то закроет глаза или отвернется от солнца, он, тем самым, не отменит его существования на небосводе.
Виды софизмов.
Софизмы строятся на том, что в рассуждении незаметно подменяются понятия, отождествляются разные вещи или же, наоборот, – различаются тождественные объекты. Будучи интеллектуальными уловками или подвохами, все софизмы разоблачимы, только в некоторых из них логическая ошибка в виде нарушения закона тождества лежит на поверхности и поэтому, как правило, почти сразу заметна. Такие софизмы разоблачить не трудно. Однако встречаются софизмы, в которых подвох спрятан достаточно глубоко, хорошо замаскирован, в силу чего над ними надо изрядно поломать голову.
Приведем пример несложного софизма.
3 и 4 – это два разных числа, 3 и 4 – это 7, следовательно, 7 – это два разных числа.
В данном внешне правильном и убедительном рассуждении смешиваются или отождествляются различные, нетождественные вещи: простое перечисление чисел (первая часть рассуждения) и математическая операция сложения (вторая часть рассуждения); между первым и вторым нельзя поставить знак равенства, т.е. налицо нарушение закона тождества. Рассмотрим еще один простой софизм.
Два раза по два (т.е. дважды два) будет не четыре, а три. Возьмем спичку или палочку и сломаем ее пополам. Это один раз два. Затем возьмем одну из половинок и сломаем ее пополам. Это второй раз два. В результате получилось три части исходной спички или палочки. Таким образом, два раза по два будет не четыре, а три.
В этом рассуждении, так же, как и в предыдущем, смешиваются различные вещи, отождествляется нетождественное: операция умножения на два и операция деления на два – одно неявно подменяется другим, в результате чего достигается эффект внешней правильности и убедительности предложенного «доказательства».
Теперь рассмотрим софизм, в котором вывод, при всей своей нелепости, представляется верным, т.е. вытекающим из исходных суждений, а логическая ошибка замаскирована достаточно искусно.
Как известно, Земля вращается вокруг своей оси с запада на восток, делая полный оборот за 24 часа. Длина земного экватора составляет приблизительно 40000 км. Зная эти величины, легко определить, с какой скоростью движется каждая точка земного экватора. Для этого надо 40000 км разделить на 24 часа. Получается приблизительно 1600 км в час. С такой скоростью вращается Земля на экваторе. (Обратим внимание на то, что никакого подвоха пока нет: каждая точка земного экватора действительно движется с запада на восток со скоростью примерно 1600 км в час). Теперь представим, что на экваторе проложен рельсовый путь, по которому идет поезд с востока на запад, т.е. в сторону, противоположную вращению Земли (она движется на восток, а поезд – на запад). Получается, что этому поезду надо постоянно преодолевать скорость вращения Земли, т.е. он должен двигаться со скоростью, превышающей 1600 км в час, иначе его будет постоянно сносить назад, на восток, и он вообще не сможет продвигаться в нужном ему направлении. Поэтому, на экваторе ходят такие суперпоезда, которые развивают скорость намного большую, чем 1600 км в час.
Можно сделать из всего сказанного и другой вывод: ввиду невозможности для поездов столь высоких скоростей, они вообще не ходят на экваторе, и железных дорог там нет. Оба этих вывода, очевидно, являются не только ложными, но и нелепыми, однако они вполне вытекают из вышерассмотренного рассуждения, которое, таким образом, представляет собой софизм, содержащий хорошо спрятанную ошибку. Если Вы предложите этот софизм своему собеседнику, он, скорее всего, сразу же скажет, что выводы о поездах на экваторе ложны. Однако задача разоблачения софизмов заключается не в том, чтобы констатировать ложность их выводов (которую софисты не только не скрывают, но и, наоборот, подчеркивают), а в том, чтобы выяснить, в чем именно заключается логическая ошибка рассуждения, какой подвох в нем содержится, как нарушается закон тождества (т.е. надо установить, что чем незаметно подменяется, что с чем неявно отождествляется, будучи нетождественным). Вряд ли Ваш собеседник сможет быстро справиться с этой задачей. Обратите его внимание на формальную правильность выводов предложенного рассуждения, на то, что они неизбежно следуют из исходных утверждений. Для большей убедительности можете завершить софизм о вращающейся Земле и движущемся поезде следующим сравнением.
Допустим, что эскалатор движется вниз, а человек бежит по нему вверх. Если его скорость меньше скорости эскалатора, его будет постоянно сносить вниз. Если его скорость равна скорости эскалатора, он будет бежать на месте. Для того, чтобы добраться до верха эскалатора, человеку надо бежать со скоростью большей, чем скорость движения эскалатора. Точно так же и поезду, идущему по экватору на запад, против вращения Земли, надо двигаться со скоростью большей, чем скорость вращения планеты (т.е. надо преодолевать в час более 1600 км).
Рассматривая этот софизм, следует обратить внимание на то, что пункт, из которого выехал поезд и пункт, в который он должен прибыть, движутся вместе с Землей в одном и том же направлении и с одинаковой скоростью, т.е. их взаимное расположение, а значит, и расстояние между ними, не меняется. Таким образом, оба данных пункта можно рассматривать как неподвижные друг относительно друга. Следовательно, с какой бы скоростью не передвигалось некое тело, оно всегда покинет один из них и обязательно достигнет другого. Почему же в нашем софистическом рассуждении получилось, что поезду, идущему с востока, надо развить очень большую скорость, чтобы добраться до западного пункта своего назначения? Потому что в софизме этот западный пункт рассматривается как неподвижный, не принимающий участия во вращении Земли. Действительно, если предположить некую точку где-нибудь над земной поверхностью, которая является неподвижной, то движущемуся к ней против вращения Земли телу, конечно же, требуется развить скорость большую, чем скорость движения планеты. Однако эта точка (или пункт) является движущейся вместе с Землей, а не неподвижной. В рассуждении факт ее движенияхитро и незаметно подменяется неявным утверждение о ее неподвижности, в результате чего и достигается требуемый в софизме эффект (закон тождества нарушается путем отождествления нетождественных явлений: движения и неподвижности). Точно так же в рассуждении про эскалатор, движущийся вниз, и человека, бегущего по нему наверх. Для того, чтобы достичь верхней, неподвижной части эскалатора, человеку действительно надо бежать быстрее, чем движется эскалатор. Если же ему надо добраться не до верхней, неподвижной части эскалатора, а до пассажира, который, стоя на эскалаторе, движется к нему навстречу, то в этом случае, с какой бы скоростью не перемещался бегущий наверх, он в любом случае достигнет того, кто движется навстречу ему. В софизме западный пункт, к которому направляется поезд, нарочно и неверно сопоставляется с неподвижной частью эскалатора, в то время как он должен сопоставляться с каким-либо объектом, которыйдвижется вместе с эскалатором (факт движения незаметно подменяется утверждением о неподвижности).
Итак, любой софизм полностью раскрыт, или разоблачен только в том случае, если нам удалось ясно и определенно установить, какие нетождественные вещи преднамеренно и незаметно отождествляются в том или ином рассуждении. Софизмы встречаются довольно часто и в самых различных областях жизни.
Логические парадоксы. Понятия и виды.
От софизмов следует отличать логические парадоксы (греч. Paradoxos–неожиданный, странный). Парадокс в широком смысле слова – это нечто необычное и удивительное, то, что расходится с привычными ожиданиями, здравым смыслом и жизненным опытом. Логический парадокс – это такая необычная и удивительная ситуация, когда два противоречащих суждения не только являются одновременно истинными (что невозможно в силу логических законов противоречия и исключенного третьего), но еще и вытекают друг из друга, друг друга обуславливают. Если софизм – это всегда какая-либо уловка, преднамеренная логическая ошибка, которую в любом случае можно обнаружить, разоблачить и устранить, то парадокс представляет собой неразрешимую ситуацию, своего рода мыслительный тупик, «камень преткновения» в логике: за всю ее историю было предложено множество разнообразных способов преодоления и устранения парадоксов, однако ни один из них, до сих пор, не является исчерпывающим, окончательным и общепризнанным.
Наиболее известный логический парадокс – это парадокс «лжеца». Часто его называют «королем логических парадоксов». Он был открыт еще в Древней Греции. Существует несколько различных формулировок данного парадокса. Наиболее коротко и просто он формулируется в ситуации, когда человек произносит простую фразу: «Я лжец». Анализ этого элементарного и бесхитростного, на первый взгляд, высказывания приводит к удивительному результату. Как известно, любое высказывание (в том числе и вышеприведенное) может быть истинным или ложным. Рассмотрим последовательно оба случая, в первом из которых высказывание «Я лжец» является истинным, а во втором – ложным.
произнес ее, сказал правду, но в этом случае он действительно лжец, следовательно, произнеся данную фразу, он солгал.
произнес ее, солгал, но в этом случае он не лжец, а правдолюб, следовательно, произнеся данную фразу, он сказал правду. Получается нечто удивительное и даже невозможное: если человек сказал правду, то он солгал; а если он солгал, то он сказал правду (два противоречащих суждения не только одновременно истинны, но и вытекают друг из друга).
Другой известный логический парадокс, обнаруженный в начале XX в. английским логиком и философом Бертраном Расселом, – это парадокс «деревенского парикмахера». Представим себе, что в некой деревне есть только один парикмахер, бреющий тех ее жителей, которые не бреются сами. Анализ этой незамысловатой ситуации приводит к необыкновенному выводу. Зададимся вопросом: может ли деревенский парикмахер брить самого себя? Рассмотрим оба варианта, в первом из которых он сам себя бреет, а во втором – не бреет.
относится к тем жителям деревни, которые бреются сами и которых не бреет парикмахер, следовательно, в этом случае, он сам себя не бреет.
он относится к тем жителям деревни, которые не бреются сами и которых бреет парикмахер, следовательно, в этом случае, он сам себя бреет. Как видим, получается невероятное: если деревенский парикмахер сам себя бреет, то он сам себя не бреет; а если он сам себя не бреет, то он сам себя бреет (два противоречащих суждения являются одновременно истинными и взаимно обуславливают друг друга).
Парадоксы «лжеца» и «деревенского парикмахера» вместе с другими подобными им парадоксами также называют антиномиями (греч. Antinomia –противоречие в законе, противозаконие – то, чего не должно быть, но, тем не менее, имеет место), т.е. рассуждениями, в которых доказывается, что два высказывания, отрицающие друг друга, вытекают одно из другого. Считается, что антиномии представляют собой наиболее резкую форму парадоксов. Однако, довольно часто термины «логический парадокс» и «антиномия» рассматриваются как синонимы.
Парадокс «Протагор и Эватл».
Менее удивительную формулировку, но не меньшую известность, чем парадоксы «лжеца» и «деревенского парикмахера», имеет парадокс «Протагор и Эватл», появившийся, как и парадокс «лжеца», еще в Древней Греции. В его основе лежит незатейливая, на первый взгляд, история.
У софиста Протагора был ученик Эватл, бравший у него уроки логики и особенно риторики (в данном случае – политического и судебного красноречия). Учитель и ученик договорились таким образом, что Эватл заплатит Протагору гонорар за обучение только в том случае, если выиграет свой первый судебный процесс. Однако по завершении обучения Эватл не стал участвовать ни в одном процессе и денег учителю, разумеется, не платил. Протагор пригрозил ему, что подаст на него в суд и тогда Эватлу в любом случае придется заплатить. «Тебя или присудят к уплате гонорара, или не присудят, – сказал ему Протагор, – если тебя присудят к уплате, ты должен будешь заплатить по приговору суда; если же тебя не присудят к уплате, то ты, как выигравший свой первый судебный процесс, должен будешь заплатить по нашему уговору». На это Эватл ему ответил: «Все правильно: меня или присудят к уплате гонорара, или не присудят; если меня присудят к уплате, то я, как проигравший свой первый судебный процесс, не заплачу по нашему уговору; если же меня не присудят к уплате, то я не заплачу по приговору суда». Таким образом, вопрос о том, должен Эватл заплатить Протагору гонорар или нет, является неразрешимым. Договор учителя и ученика, несмотря на его вполне невинный внешний вид, является внутренне, или логически противоречивым, т.к. он требует выполнения невозможного действия: Эватл должен и заплатить за обучение, и не заплатить одновременно. В силу этого сам договор между Протагором и Эватлом, а также вопрос об их тяжбе, представляет собой не что иное, как логический парадокс.
В отличие от парадоксов-антиномий («лжеца» и «деревенского парикмахера») парадокс «Протагор и Эватл» имеет менее резкую форму, так как в нем два противоречащих суждения («Эватл должен заплатить» и «Эватл не должен заплатить») являются одновременно истинными, но не вытекают друг из друга, как в случае с парадоксами-антиномиями.
Парадоксы-апории.
Отдельной группой парадоксов являются апории (греч. Aporia – затруднение, недоумение) – рассуждения, которые показывают противоречия между тем, что мы воспринимаем органами чувств (видим, слышим, осязаем и т.п.) и тем, что можно мысленно проанализировать (проще говоря – противоречия между видимым и мыслимым). Наиболее известные апории выдвинул древнегреческий философ Зенон Элейский, который утверждал, что движение, наблюдаемое нами повсюду, невозможно сделать предметом мысленного анализа, т.е. движение можно видеть, но нельзя мыслить. Одна из его апорий называется «Дихотомия» (в пер. с греч. – деление пополам).
Допустим, некоему телу надо пройти из пункта А в пункт В. Нет никакого сомнения в том, что мы можем увидеть, как тело, покинув один пункт, через какое-то время достигнет другого. Однако давайте попробуем не доверять своим глазам, которые говорят нам о том, что тело движется, и попытаемся воспринять движение не глазами, а мыслью, постараемся не увидеть его, а помыслить. В этом случае у нас получится следующее. Прежде, чем пройти весь свой путь из пункта А в пункт В, телу надо пройти половину этого пути, ведь если оно не пойдет половину пути, то, конечно же, не пройдет и весь путь. Но прежде, чем тело пройдет половину пути, ему надо пройти 1/4 часть пути. Однако до того, как оно пройдет эту 1/4 часть пути, ему надо пройти 1/8 часть пути; а еще раньше ему требуется пройти 1/16 часть пути, а перед этим – 1/32 часть, а прежде того – 1/64 часть, а до этого – 1/128 часть и так до бесконечности. Значит, чтобы пройти из пункта А в пункт В, телу надо пройти бесконечное количество отрезков этого пути. Возможно ли пройти бесконечное количество отрезков пути? Невозможно! Следовательно, тело никогда не сможет пройти свой путь. Таким образом, глаза свидетельствуют, что путь будет пройден, а мысль, наоборот, отрицает это (видимое противоречит мыслимому).
Таким образом, парадокс – это рассуждение, доказывающее как истинность, так и ложность некоторого суждения, иными словами, доказывающее как это суждение, так и его отрицание. Парадоксальны в широком смысле афоризмы, подобные таким: «Люди жестоки, но человек добр» или «Признайте, что все равны, – и тут же появятся великие», и вообще любые мнения и суждения, отклоняющиеся от традиции и противостоящие общеизвестному, «ортодоксальному».
Математический парадокс.
Математический парадокс можно определить как истину, настолько противоречащую нашему опыту, интуиции и здравому смыслу, что в нее трудно поверить даже после того, как мы шаг за шагом проследим все ее доказательство. Математическим софизмом принято называть не менее удивительные утверждения, в доказательствах которых в отличие от доказательства парадоксов кроются незаметные, а подчас и довольно тонкие ошибки. В любой области математики — от простой арифметики до современной теоретико-множественной топологии — есть свои псевдодоказательства, свои софизмы. В лучших из них рассуждения с тщательно замаскированной ошибкой позволяют приходить к самым невероятным заключениям. Ошибкам в геометрических доказательствах Евклид посвятил целую книгу, но до наших дней она не дошла, и нам остается лишь гадать о том, какую невосполнимую утрату понесла из-за этого элементарная математика.
Математические софизмы выбраны нами из разных областей математики, каждый из них по-своему интересен. Объяснять, в чем состоит ошибочность рассуждения в каждом софизме, мы не будем, чтобы не лишать читателя удовольствия самостоятельно найти ее.
Наш первый софизм чрезвычайно элементарен. Мы предпошлем ему занимательный парадокс, на примере которого великий немецкий математик Давид Гильберт любил объяснять необычные свойства наименьшего из трансфинитных чисел «алеф-нуль». Как-то раз хозяину одной великолепной гостиницы с бесконечным, но счетным числом номеров, ни один из которых не был свободен, нужно было принять нового гостя. Хозяин вышел из положения очень просто: каждого из своих постояльцев он переселил в комнату, номер которой был на единицу больше номера прежней комнаты, в результате чего обитатель n-й комнаты переехал в (n + 1)-ю и освободил для нового гостя самую первую комнату. Как может поступить хозяин, если прибудет бесконечное множество новых гостей? Ничуть не смущаясь, хозяин переселяет всех своих прежних постояльцев в комнаты с вдвое большими номерами (гость из комнаты 1 переезжает в комнату 2, гость из комнаты 2 — в комнату 4, гость из комнаты 3 — в комнату 6, гость из комнаты 4 — в комнату 8 и т. д.) и размещает вновь прибывших в освободившихся комнатах с нечетными номерами.
Но так ли необходимо хозяину иметь счетное число комнат для того, чтобы разместить новых гостей? В приведенных ниже стишах, взятых из одного английского журнала, выходившего в прошлом веке, рассказывается о хитром хозяине гостиницы, сумевшем разместить в девяти номерах десять гостей так, что каждому из них досталось по отдельной комнате.
Их было десять чудаков, — Пусти, хозяин, ночевать, Хозяин тем гостям был рад, — Восьми гостям я предложу Лишь он сказал, и сразу крик, | Двух первых путников пока, Спал третий в «Б», четвертый в «В», Потом, вернувшись снова в «А», Хоть много лет с тех пор прошло, Иль арифметика стара, |
Примером более тонкого математического софизма служит следующее «алгебраическое» доказательство того, что любое число а равно меньшему числу b.
Начнем с равенства
а = b + c.
Умножив обе его части на a — b, получим
а² — аb = аb + аc — b² — be.
Перенесем ас в левую часть:
а² — аb — аc = аb — b² — be
и разложим на множители:
а(а — b — c) = b(а — b — c).
Разделив обе части равенства на а — b — c, найдем
а = b,
что и требовалось доказать.
Много неприятностей подстерегает того, кто неосторожно обращается с мнимой единицей i (квадратным корнем из -1). Об этом свидетельствует хотя бы следующее удивительное «доказательство» равенства 1 = -1:
Треугольник Керри. |
В планиметрии большая часть ошибочных доказательств связана с использованием неправильных чертежей. Рассмотрим, например, удивительное «доказательство» того, что площадь лицевой стороны многоугольника, вырезанного из бумаги, отличается от площади оборотной стороны того же многоугольника. Это «доказательство» придумано врачом-психиатром Л. Восбургом Лионсом, в нем используется один любопытный принцип, открытый П. Керри.
Прежде всего начертим на листке бумаги в клетку треугольник, площадь которого равна 60 клеткам , и разрежем его вдоль прямых, показанных на верхнем рисунке. Перевернув части треугольника на другую сторону и составив из них треугольник, мы обнаружим, что в центре нового треугольника появилась дырка площадью в 2 клетки. Иначе говоря, суммарная площадь частей исходного треугольника при переворачивании уменьшилась до 58 клеток! Перевернув еще раз (лицевой стороной вверх) лишь три части исходного треугольника, мы сможем составить из всех шести частей фигуру. Ее площадь равна 59 клеткам. Что-то здесь не так, это ясно, но что именно?
Теория вероятностей изобилует правдоподобными, но логически не безупречными рассуждениями. Предположим, что вы встретились со своим другом Джоном и что каждый из вас носит тот галстук, который ваша жена подарила ему на Рождество. Вы начинаете спорить о том, чей галстук дороже, и в конце концов решаете пойти в магазин, где были куплены галстуки, и узнать, сколько стоит каждый из них. Тот, кто выиграет (чей галстук окажется дороже), по условию пари должен отдать свой галстук проигравшему, чтобы смягчить горечь поражения.
Вы рассуждаете так: «Шансы выиграть и проиграть у меня одинаковые. Выиграв, я обеднею на сумму, равную стоимости моего галстука. Проиграв, я получу более дорогой галстук. Следовательно, заключив пари, я окажусь в более выгодном положении, чем мой приятель».
Разумеется, ничто не мешает Джону рассуждать точно так же. Могут ли обе стороны, заключившие пари, иметь преимущество друг перед другом?
Один из наиболее впечатляющих парадоксов топологии заключается в том, что тор (поверхность бублика), если его поверхность растягивать (не разрывая при этом), можно вывернуть наизнанку через любую сколь угодно малую дырочку. Никакой проблемы здесь нет. Но уж если тор действительно можно вывернуть наизнанку, то следует обратить внимание и еще на один, пожалуй, даже более замечательный факт.
Если тор вывернуть наизнанку, то кажется, что кольца, нарисованные на его поверхности, расцепляются. |
На наружной стороне тора проведем меридиан . На внутренней стороне того же тора проведем параллель. Обе эти окружности, очевидно, сцеплены между собой. Вывернем теперь тор наизнанку через дырочку в его поверхности. Как видно из нижнего рисунка, первая окружность перейдет с наружной поверхности тора внутрь, а вторая — наружу, и обе окружности окажутся расцепленными! Очевидно, что это нарушает фундаментальный топологический закон, который гласит: разделить две сцепленные замкнутые кривые можно, лишь разорвав одну из кривых и протащив через место разрыва вторую.
В нашем последнем софизме, заимствованном из элементарной теории чисел, речь пойдет о сравнительных достоинствах «интересных» чисел. Разумеется, числа могут представлять интерес с различных точек зрения. Так, для Джорджа Мура, когда он писал свою знаменитую оду тридцатилетней женщине, особый интерес представляло число 30 — Мур считал, что в этом возрасте замужние женщины особенно привлекательны. Для специалиста по теории чисел число 30 представляет, по-видимому, еще больший интерес, поскольку это наибольшее из чисел, обладающих тем свойством, что все меньшие числа, не имеющие с ними общих делителей, просты. Число 15 873 также небезынтересно: если его умножить сначала на любую цифру, то есть на любое из чисел от 1 до 9, а затем на 7, то результат будет состоять из повторений выбранной для первого умножения цифры. Еще более удивительными свойствами обладает число 142 857: умножая его на числа от 1 до 6, вы будете получать циклические перестановки одних и тех же шести цифр.
Возникает вопрос: существуют ли неинтересные числа? С помощью элементарных рассуждений нетрудно доказать, что неинтересных чисел нет. Если бы скучные числа существовали, то все числа можно было бы разбить на два класса: интересные числа и неинтересные, скучные числа. Во множестве неинтересных чисел нашлось бы одно число, которое было бы наименьшим из всех неинтересных чисел. Но наименьшее из всех неинтересных чисел — это уже число само по себе интересное. Поэтому мы должны были бы изъять его из множества неинтересных чисел и перевести в другое множество. В оставшемся множестве в свою очередь нашлось бы наименьшее число. Повторяя этот процесс достаточно долго, можно сделать интересным любое неинтересное число.
* * *
Наибольшее беспокойство читателям доставит софизм с вывернутым наизнанку тором. Тор действительно можно вывернуть наизнанку, но это изменяет его ориентацию. В результате обе окружности меняются местами и остаются в зацеплении. Если отрезать нижнюю часть чулка и сшить концы в трубку, получится превосходная модель тора. На ней нитками различных цветов можно простегать меридиан и параллель. Такой тор легко вывернуть через дырочку в поверхности, при этом прекрасно видно все, что происходит с меридианом и параллелью.
Подробное объяснение софизма с треугольником и некоторые другие головоломки можно найти в двух главах «Исчезновение фигур» книги «Математические чудеса и тайны»**. Софизм с галстуком подробно разобран у М. Крайчика***.
Заключительное «доказательство» того, что неинтересных чисел не существует, вызвало следующую телеграмму читателя:
Немедленно прекратите вылавливать неинтересные числа и превращать их в интересные. Для интереса оставьте хоть одно неинтересное число!
Алгебраические софизмы – намеренно скрытые ошибки в уравнениях и числовых выражениях.
Пример№1
Итак у меня есть к вам и к себе интересная задачка для разминки ума... ...используя простейшие математические преобразования и формулы всем нам известные со школы, я могу доказать, что, при условии a=b+c "a" расняется "c" ...не верите?! смотрите: a=b+с Умножим обе части на a-b a2-ab=ab+ac-b2-bc Переносим ac в левую часть a2-ab-ac =ab-b2-bc Разложим на множители a(a-b-c)=b(a-b-c) Разделим обе части на a-b-c Получаем: a=b
Пример№2
докажем, что 2+2=5
0=0
15-15=10-10
15-9-6=10-6-4
3*(5-3-2)=2*(5-3-2)
одинаковые множители сокращаются
и получается
3=2
3+2=2+2
5=2+2
2+2=5
Пример№3
5 копеек = 50 копеек
Докажем, что 5 копеек это то же самое, что 50 копеек:
Сможете ли объяснить, как такое возможно?!
Пример№4
Четыре ученицы – Мария, Нина, Ольга и Поля – участвовали в лыжных соревнованиях и заняли 4 первых места. На вопрос, кто какое место занял, они дали три разных ответа: 1) Ольга заняла 1-е место, Нина – 2-е, 2) Ольга – 2-е, Поля – 3-е, 3) Мария - 2-е, Поля – 4-е. Отвечавшие при этом признали, что одно из высказываний каждого ответа верно, а другое неверно. Какое место заняла каждая из учениц?
Решение.
На рисунках 1 и 2 точки «верхнего» множества соответствуют именам учениц, а «нижнего» - занятым местам. Сплошные отрезки соответствуют высказываниям первой ученицы, штриховые – второй, штрихпунктирные – третьей. Отрезки, соответствующие ложному высказыванию, будем перечеркивать. Предположим, что Нина заняла второе место. В таком случае (рис. 1) Поля заняла третье и четвертое места, что по условию задачи невозможно. Предположим, что Оля заняла 1-е место (рис. 2), тогда Мария заняла 2-е место, Поля - 3-е место, Нина – 4-е.
Пример№5.
1. 4руб.= 40 000коп. Возьмем верное равенство: 2руб.= 200коп. и возведем его по частям в квадрат. Мы получим: 4 руб.= 40 000коп.
В чем ошибка? Возведение в квадрат денег не имеет смысла. В квадрат возводятся числа, а не величины.
2. 5=6. Попытаемся доказать, что 5=6. С этой целью возьмем числовое тождество: 35+10 – 45=42+12 – 54. Вынесем общие множители левой и правой частей за скобки. Получим: 5( 7+2 – 9)=6(7+2 – 9). Разделим обе части этого равенства на общий множитель (заключенный в скобки). Получаем 5=6. В чем ошибка? Нельзя делить на 7+2 – 9=0.
3. Отрицательное число больше положительного.
Возьмем два положительных числа a и b. Сравним два отношения:
и они равны, так как каждое из них равно . Можем составить пропорцию: . Но если в пропорции предыдущий член первого отношения больше последующего, то предыдущий член второго отношения так же больше своего последующего. В нашем случае a; следовательно, должно быть , т.е. отрицательное число больше положительного.
В чем ошибка? Свойство: если в пропорции предыдущий член первого отношения больше последующего, то и предыдущий член второго отношения больше своего последующего – может оказаться неверным, если некоторые члены пропорции отрицательны.
Значение и взаимосвязь софизмов и логических парадоксов.
Внешне парадоксы похожи на софизмы, поскольку тоже приводят рассуждения к противоречиям. Главное же различие между ними, как остроумно заметил писатель Даниил Гранин, заключается в том, что софизм – это ложь, обряженная в одежды истины, а парадокс – истина в одеянии лжи. Это, конечно, образное сравнение, но оно довольно точно схватывает суть проблемы. Хотя в действительности связь софизма и парадокса более тонкая и сложная. Парадокс может быть следствием, заключением некоторых софизмов, то есть из корректного по форме, но ложного по содержанию рассуждения может следовать выражение, которое можно назвать некорректным по форме, но истинным по содержанию. Парадоксальный вывод обязывает искать источник парадокса, заставляет выбираться из круга, в котором оказалось наше рассуждение, и искать другой путь. Например, псевдоистину содержит суждение с двойным отрицанием: «Я не знал, что он не брал», так как двойное отрицание является утверждением. Или: «Нельзя не верить потерпевшему, – говорит обвинитель, – ибо невозможно измыслить столь чудовищное обвинение». «Невозможно, согласен, – возражает защитник, – но если невозможно измыслить, как же можно было совершить?».
Осмысление логических ошибок, которые содержались в софизмах, было важным моментом в развитии логики и культуры вообще.
Литература
1. Аменицкий Н. Математические развлечения и любопытные приемы мышления. – М.,
2. Богомолов С. А. Актуальная бесконечность. – М.; Л.
3. Брадис В. М., Харчева А. К. Ошибки в математических рассуждениях. – М.
4. Горячев Д. Н., Воронец А. М. Задачи, вопросы и софизмы для любителей математики. – М.
5. Лямин А. А. Математические парадоксы и интересные задачи. – М.
6. Мадера А.Г., Мадера Д.А. Математические софизмы. – М.: Просвещение
Л. Нечаев. Яма
Рисуем осенние листья
Тигрёнок на подсолнухе
Фотографии кратера Королёва на Марсе
Воздух - музыкант