Химический элемент — элемент elementum — стихия, самостоятельная часть, являющаяся основой чего-либо, например системы или множества.
Латинское слово elementum использовали ещё античные авторы (Цицерон, Овидий, Гораций), причём почти в том же смысле, что и сейчас — как часть чего-то (речи, образования и т. п.).
Древнее изречение гласило: «Cлова состоят из букв, тела из элементов». Отсюда — одно из возможных происхождений этого слова — по названию ряда согласных латинских букв L, M, N (el—em—en).
Михаил Васильевич Ломоносов элементами называл атомы.
Химический элемент — множество атомов с одинаковым зарядом ядра, числом протонов, совпадающим с порядковым или атомным номером в таблице Менделеева. Каждый химический элемент имеет свои название и символ, которые приводятся в Периодической системе элементов Дмитрия Ивановича Менделеева.
Формой существования химических элементов в свободном виде являются простые вещества (одноэлементные)
История становления понятия
Слово элемент (лат. elementum) использовалось еще в античности (Цицероном, Овидием, Горацием) как часть чего-то (элемент речи, элемент образования и т. п.). В древности было распространено изречение «Как слова состоят из букв, так и тела — из элементов». Отсюда — вероятное происхождение этого слова: по названию ряда согласных букв в латинском алфавите: l, m, n, t («el» — «em» — «en» — «tum»).
На международном съезде химиков в г. Карлсруе (Германия) в 1860 г. были приняты определения понятий молекулы и атома.
Химический элемент (с точки зрения атомно-молекулярного учения) представляет собой каждый отдельный вид атомов. Современное определение химического элемента: Химический элемент — каждый отдельный вид атомов, характеризующийся определенным положительным зарядом ядра кикос
Известные химические элементы
На ноябрь 2009 года известно 117 химических элементов,
(с порядковыми номерами с 1 по 116 и 118), из них 94 обнаружены в природе (некоторые — лишь в следовых количествах), остальные 23 получены искусственно в результате ядерных реакций.
Первые 112 элементов имеют постоянные названия, остальные — временные.
Открытие 112-го элемента (самый тяжелый из официальных) признано Международным союзом теоретической и прикладной химии (en:International Union for Pure and Applied Chemistry). Самый стабильный из известных изотопов данного элемента имеет период полураспада 34 секунды. На начало июня 2009 года носит неофициальное имя унунбий, был впервые синтезирован в феврале 1996 года на ускорителе тяжелых ионов в Институте тяжелых ионов (Gesellschaft für Schwerionenforschung, GSI) в Дармштадте, Германия (в результате бомбардировки свинцовой мишени ядрами цинка). Первооткрыватели имеют полгода, чтобы предложить новое официальное название для добавления в таблицу (ими уже предлагались Виксхаузий, Гельмгольций, Венусий, Фриший, Штрассманий и Гейзенбергий). В настоящее время известны трансурановые элементы с номерами 113—116 и 118, полученные в Объединенном институте ядерных исследований в Дубне, однако они официально пока не признаны.
Символы химических элементов
Символ элемента обозначает
— Название элемента
— Один атом элемента
— Один моль атомов этого элемента
Символы химических элементов используются как сокращения для названия элементов. В качестве символа обычно берут начальную букву названия элемента и в случае необходимости добавляют следующую или одну из следующих. Обычно это начальные буквы латинских названий элементов: Cu — медь (cuprum), Ag — серебро (argentum), Fe — железо (ferrum), Au — золото (aurum), Hg — ртуть (hydrargirum).
С помощью цифры, стоящей впереди символа элемента, можно обозначить число атомов или молей атомов данного элемента. Примеры:
— 5H — пять атомов элемента водорода, пять моль атомов элемента водорода
— 3S — три атома элемента серы, три моль атомов серы
Цифрами меньшего размера возле символа элемента обозначаются: слева вверху — атомная масса, слева внизу — порядковый номер, справа вверху — заряд иона, справа внизу — число атомов в молекуле
Примеры:
— H2 — молекула водорода, состоящая из двух атомов водорода
— Cu2 + — ион меди с зарядом 2+
— {}^{12}_6C — атом углерода с зарядом ядра, равным 6 и атомной массой, равной 12.
История
Система химических символов была предложена в 1811г. шведским химиком Я. Берцелиусом. Временные символы элементов состоят из трёх букв, представляющих аббревиатуру их атомного номера на латыни. Символика химических элементов выявляет не только качественный состав химических соединений, но и количественный, так как за символом каждого элемента скрывается присущий только ему заряд атомного ядра, определяющий количество электронов в атомной оболочке нейтрального атома и, таким образом, его химические свойства. Атомная масса также считалась ранее (в 19-м — начале 20-го века) характерным свойством, количественно определяющим химический элемент, однако с открытием изотопов стало ясно, что различные совокупности атомов одного и того же элемента могут иметь различающиеся атомные массы; так, радиогенный гелий, выделенный из урановых минералов, в связи с преобладанием изотопа 4He имеет атомную массу больше, чем гелий космических лучей.
1 — обозначение химического элемента.
2 — русское название.
3 — порядковый номер химического элемента, равный количеству протонов в атоме.
4 — атомная масса.
5 — распределение электронов по энергетическим уровням.
6 — электронная конфигурация.
Распространённость химических элементов в природе:
Из всех химических элементов в природе найдено 88; такие элементы, как технеций Tc (порядковый номер 43), прометий Pm (61), астат At (85) и франций Fr (87), а также все элементы, следующие за ураном U(порядковый номер 92), впервые получены искусственно. Некоторые из них в исчезающе малых количествах обнаружены в природе.
Из химических элементов наиболее распространены в земной коре кислород и кремний. Эти элементы вместе с элементами алюминий, железо, кальций, натрий, калий, магний, водород и титан составляют более 99% массы земной оболочки, так что на остальные элементы приходится менее 1%. В морской воде, помимо кислорода и водорода — составных частей самой воды, высокое содержание имеют такие элементы, как хлор, натрий, магний, сера, калий, бром и углерод. Массовое содержание элемента в земной коре называется кларковым числом или кларком элемента.
Содержание элементов в коре Земли отличается от содержания элементов в Земле, взятой как целое, поскольку химсоставы коры, мантии и ядра Земли различны. Так, ядро состоит в основном из железа и никеля. В свою очередь, содержания элементов в Солнечной системе и в целом во Вселенной также отличаются от земных. Наиболее распространённым элементом во Вселенной является водород, за ним идёт гелий. Исследование относительных распространённостей химических элементов и их изотопов в космосе является важным источником информации о процессах нуклеосинтеза и об эволюции Солнечной системы и небесных тел.
Химические вещества
Химическое вещество может состоять как из одного химического элемента (простое вещество), так и из разных (сложное вещество или химическое соединение). Способность одного элемента существовать в виде различных простых веществ, отличающихся по свойствам, называется аллотропией.
Агрегатное состояние
В обычных условиях соответствующие простые вещества для 11 элементов являются газами (H, He, N, O, F, Ne, Cl, Ar, Kr, Xe, Rn), для 2 — жидкостями (Br, Hg), для остальных элементов — твёрдыми телами. Химические элементы образуют около 500 простых веществ.
Вложение | Размер |
---|---|
himicheskie_elementy_pokaz.ppsx | 2.1 МБ |
Слайд 1
Химические элементы в живых организмахСлайд 2
Все живые существа состоят из химических элементов. Необходимо знать, какие элементы важны для здоровья растений, животных и человека, а какие вредны и в каком количестве. Введение
Слайд 3
Начнём с тех химических элементов, без которых жизнь на Земле была бы невозможна. Водород, кислород, и их соединение - вода. Основы
Слайд 4
Является структурной единицей органических соединений, участвующий в построении организмов и обеспечении их жизнедеятельности. Водород ( Hydrogenium )
Слайд 5
Водород был открыт англичанином Х. Кавендишем в 1766 году. Своё название он получил от греч. Слов хидор – вода и генес – род. Водород ( Hydrogenium ) Х. Кавендиш
Слайд 6
Кислород – биоэлемент. В атмосфере его всего 21%. В живых организмах кислорода около 70%. Кислород ( Oxygenium )
Слайд 7
Кислород необходим для дыхания всех живых организмов, он главный участник окислительно-восстановительных реакций. Также участвует в построении организмов и обеспечении их жизнедеятельности. Кислород ( Oxygenium )
Слайд 8
Участвует в процессах фотосинтеза и дыхания. Весь кислород возник благодаря деятельности зелёных растений, которые выделяют кислород в процессе фотосинтеза на свету. Кислород в жизни растений Фотосинтез
Слайд 9
Большинство живых организмов используют кислород для дыхания и поэтому являются аэробными организмами. Но каждому нужно разное количество кислорода. К примеру, для разных пород рыб нужно разное количества кислорода в воде. Кому-то 4мг/мл, а кому-то намного больше. Кислород в жизни животных
Слайд 10
На долю кислорода приходится 62% от массы тела человека. Кислород входит в состав белков, нуклеиновых кислот и др. Окисление пищи – источник энергии. Кислород доставляется гемоглобином, который образует соединение – оксигемоглобин. Оно окисляет белки, жиры и углеводы, образуя углекислый газ и воду, и выделяя энергию, необходимую для жизнедеятельности. Кислород в жизни человека Гемоглобин
Слайд 11
Аллотропное видоизменение кислорода – озон. Это газ, образующийся во время грозы из молекул кислорода. На высоте 15-20 км. над Землёй, озон образует слой, защищающий от ультрафиолетовых лучей. Использую озон для обеззараживания и дезинфекции. Озон Земля и озоновый слой
Слайд 13
Основным соединением водорода и кислорода является вода. Растения на 70-80% состоят из воды. Совокупность процессов поглощения, усвоения и выделения воды, называется водным режимом. Вода (Aqua) Молекула воды
Слайд 14
Вода выполняет множество функций: является средой для биохимических реакций, участвует в фотосинтезе, определяет функциональную активность ферментов и структурных белков клеточных мембран и органоидов. Вода ( Aqua) в жизни растений
Слайд 15
В процессе эволюции растения приобрели различные адаптации, связанные с регуляцией водного режима в конкретных условиях обитания. По этим признакам их относят к разным экологическим группам. Вода ( Aqua) в жизни растений
Слайд 16
Жизнедеятельность многих бактерий проходит во влажной среде. В почве широко распространены водородные бактерии, которые в процессе хемосинтеза окисляют водород, постоянно образующийся при анаэробном разложении различных органических остатков микроорганизмами почвы. Вода ( Aqua) в жизни бактерий 2 H 2 +O 2 =2H 2 O+ энергия
Слайд 17
Общее содержание воды в организме колеблется от 95-98% у кишечнополостных до 60-70% у млекопитающих и 45-65% у насекомых. У человека при общем содержании воды 60% массы тела, внутриклеточная вода – 40%, межклеточная – 16%, внутрисосудистая – 4,5% Вода ( Aqua) в жизни животных и человека
Слайд 18
Вода с растворёнными в ней минеральными веществами включается в водно-солевой обмен – совокупность процессов потребления, всасывания и выделения воды и солей. Вода ( Aqua) в жизни животных и человека Водно-солевой обмен обеспечивает постоянство ионного состава, кислотно-щелочного равновесия и объёма жидкостей внутренней среды организма
Слайд 19
Кроме обычной воды, существует метаболическая вода, которая образуется в процессе обмена веществ. Она необходима для нормального развития зародыша. У верблюдов вода образуется в процессе окисления жиров. Из 100 грамм – 107 мл. воды. Вода ( Aqua) в жизни животных и человека Верблюды в пустыне. В горбах – метаболическая вода.
Слайд 20
Роль воды в жизни живых организмов огромна. Если человек потеряет 50% массы в результате голодания, он может остаться в живых, но если потеряет 15-20% массы в результате обезвоживания – он умрёт. Вода ( Aqua) в жизни животных и человека
Слайд 21
Следующая группа химических элементов также очень важна для жизни. Человек должен употреблять их не менее 400 мг в день. А такие вещества как Na и K – 3000 мг день. Ca, P, Na, K, Mg
Слайд 22
Кальций был открыт Х. Дэви в 1808 году. Название происходит от лат. калцис (камень, известняк). Суточное поступления кальция в организм составляет 800-1500 мг. Кальций (Calcium) Х. Дэви
Слайд 23
Содержание кальция в растениях – 0,3 мг. Кальций используют как строительное вещество для срединной пластинки, а также как компонент «внешнего скелета» водорослей. Кальций повышает прочность и выносливость растений. Роль кальция в жизни растений Ятрышник – индикатор содержания Ca
Слайд 25
В организме животного, кальция – 1,9-2,5%. Кальций – материал для постройки костных скелетов. Карбонат кальция CaCO 3 входит в состав кораллов, раковин, панцирей и скелетов микроорганизмов. Роль кальция в жизни животных Раковина
Слайд 26
В организме человека 98-99% кальция содержится в костях. Кальций необходим для процессов кроветворения и свёртывания крови, для регуляции работы сердца, обмена веществ, для нормального роста костей (скелет, зубы). Роль кальция в жизни человека
Слайд 27
Кальций находится в кисломолочных продуктах, в овощах, фруктах, миндале, злаках… Но больше всего кальция содержится в сырах. Где находится кальций?
Слайд 28
CaCo 3 – кальцит, мел и др. Ca 3 (PO 4 ) 2 – костная мука Ca(NO 3 ) 2 – кальц . селитра CaO – негашеная известь Ca(OH) 2 -известковая вода CaOCl 2 – хлорка Соединения кальция Кальцит
Слайд 29
Фосфор входит в состав важнейших веществ клеток: ДНК, РНК, фосфолипидов , глицерина и АТФ. Открыт фосфор Х. Брандом в 1669 г. Фосфор (Р) Бранд открывает фосфор. Картина Дж. Райта
Слайд 30
Фосфор составляет 0,1-0,7% от массы растения. Фосфор ускоряет созревание плодов, поэтому удобрения из фосфора активно применяют в сельском хозяйстве. Фосфор в жизни растений
Слайд 31
При недостатке фосфора замедляется обмен веществ, корни слабеют, листья принимают пурпурный цвет… Фосфор в жизни растений
Слайд 32
В организме человека содержится 4,5 кг фосфора. Фосфор входит в состав липидов, ДНК, РНК, АТФ. Почти все важнейшие процессы человека связаны с превращением фосфорсодержащих веществ. Фосфор в жизни человека Молекула ДНК
Слайд 33
Для организма, фосфора необходимо в двое больше, чем кальция. Но кальций и фосфор не могут друг без друга. Фосфор, также как и кальций, является составной частью костной ткани. Если баланс фосфора и кальция нарушается, то организм для выживания должен будет брать запасы из костей и зубов. Фосфор в жизни человека Суточная норма потребления фосфора 1000-1300 мг.
Слайд 34
В активно работающих органах – печени, мышцах, мозге – наиболее интенсивно расходуется АТФ. АТФ – это энергия, и одну из главных ролей в этом нуклеотиде играет фосфор. Поэтому А.Е. Ферсман назвал фосфор «элементом жизни и мысли». Фосфор в жизни человека Молекула АТФ
Слайд 35
Белый фосфор окисляется на воздухе, давая зелёное свечение. Очень ядовит. Используется в производстве серной кислоты и красного фосфора. Белый фосфор
Слайд 36
Порошок, не ядовит, не горюч. Используется в качестве наполнителя в лампах накаливания и при производстве спичек. Красный фосфор
Слайд 37
Натрий важен для транспорта веществ через клеточные мембраны. Также натрий регулирует транспорт углерода в растении. При его недостатке происходит торможение в образовании хлорофилла. Натрий в жизни растений
Слайд 38
Натрий распределён по всему организму. 40% натрия находится в костной ткани, часть в эритроцитах, мышцах и др. Натрий в жизни человека Суточная норма потребления натрия – - 4000-6000 мг.
Слайд 39
Натрий входит в состав натрий-калиевого насоса, особого белка, выкачивающего из клетки ионы натрия и накачивающий ионы калия, тем самым обеспечивая активный транспорт вещей в клетку. Натрий в жизни человека
Слайд 40
Натрий поддерживает кислотно-щелочной баланс в организме, регулирует кровяное давление, синтез белков и многое другое. Недостаток натрия приводит к головным болям, слабости, потере аппетита. Натрий в жизни человека Поваренная соль – один из главных источников натрия.
Слайд 41
Роль калия в жизни растений велика. Калий содержится в плодах, стеблях, корнях, листьях. Он активирует синтез органических веществ, регулирует транспорт углерода, влияет на азотный обмен и водный баланс. Калий в жизни растений
Слайд 42
При недостатке калия в клетках накапливается избыток аммиака, что может привести к гибели растения. Признак нехватки элемента – жёлтые листья. Калий в жизни растений
Слайд 43
Калий входит в состав натрий-калиевого насоса. В организме человека, массой 70 кг, содержится 140 грамм калия. Взрослый человек должен потреблять в сутки 2-3 мг на 1 кг веса, а ребёнок – 12-13 мг на 1 кг веса. Недостаток калия ведёт заболеванию глаз, плохой памяти, пародонтозу. Калий в жизни человека
Слайд 44
KOH – едкий калий KCl - сильвин K2SO4 - арканит KAL(SO4)2*12H2O – - алюмокалиевые квасцы Основные соединения калия
Слайд 45
Магний участвует в аккумуляции солнечной энергии, он входит в состав молекулы хлорофилла, являясь центральным атомом в молекуле. Магний в жизни растений
Слайд 46
При дефиците магния снижается урожайность, нарушается образование хлоропластов. Листья становятся «мраморными»: бледнеют между жилками, а вдоль жилок остаются зелёными. Магний в жизни растений
Слайд 47
При весе человека 70 кг, магния в нём содержится 20 грамм. Он оказывает антисептическое действие, снижает артериальное давление и содержание холестерина, укрепляет иммунную систему. При недостатке магния повышается предрасположенность к инфарктам. Магний в жизни человека
Слайд 48
Мы рассмотрели несколько химических элементов и увидели, что все они важны для жизни растений, животных и человека. Многие важные элементы не были освещены в этой презентации, т.к. брались только те вещества, которые нужно употреблять человеку в достаточно большом количестве каждый день (минимум – 300мг). Итог
Слайд 49
Над презентацией работал ученик 9 «А» класса, ГОУ СОШ №425 Залесов А.К. Используемые ресурсы: а) И.А. Шапошникова, И.В. Болгова . «Таблица Менделеева в живых организмах» б) www.wikipedia.org в) www.xumuk.ru
Сверчок
Кто грамотней?
Сказка на ночь про Снеговика
Юрий Визбор. Милая моя
10 осенних мастер-классов для детей