Космические просторы, размеры которых трудно представить человеческим разумом, звезды и галактики, неизведанные, восхитительные и манящие, кометы и астероиды, пугающие своей близостью…
Вложение | Размер |
---|---|
tayny_kosmosa.doc | 527.5 КБ |
Введение.
“Достаточно только посмотреть наверх…”
С тех пор, как первый человек взглянул на звездное небо, его по сей день не покидает, и не покинет, скорее всего, уже никогда, чувство единения с чем-то неизмеримо большим, таинственным и прекрасным, нежели он сам. Родство с Вселенной, которая не очень-то и спешит признавать свое материнство.
Космические просторы, размеры которых трудно представить человеческим разумом, звезды и галактики, неизведанные, восхитительные и манящие, кометы и астероиды, пугающие своей близостью…все это привлекает и меня. Поэтому темой своей проектной деятельности я выбрал два самых загадочных и непостижимых феномена Космоса – Черные дыры и Звезды.
Звезды, горячие светящиеся небесные тела, подобные Солнцу. Звезды различаются по размеру, температуре и яркости. По многим параметрам Солнце – типичная звезда, хотя кажется гораздо ярче и больше всех остальных звезд, поскольку расположена намного ближе к Земле. Даже ближайшая звезда (Проксима Кентавра) в 272 000 раз дальше от Земли, чем Солнце, поэтому звезды кажутся нам светлыми точками на небе. Хотя звезды рассыпаны по всему небосводу, мы видим их только ночью, а днем на фоне яркого рассеянного в воздухе солнечного света они не видны.
Живя на поверхности Земли, мы находимся на дне воздушного океана, который непрерывно волнуется и бурлит, преломляя лучи света звезд, отчего они кажутся нам мигающими и дрожащими. Космонавты на орбите видят звезды как цветные немигающие точки.
Черные дыры – это совершенно новые объекты, качественно
отличающиеся от всего известного науке. Из черной дыры не может вылететь никакая частица, не может выйти никакое излучение, так как ничто не способно двигаться быстрее света. По современным представлениям, в черные дыры превращаются достаточно массивные звезды в конце своей эволюции. Для превращения в черную дыру Солнце должно сжаться до радиуса 3км. В черную дыру могут попадать и тела, и свет, но из нее ничто не может выйти. Когда тела попадают в черную дыру, ее размер и масса возрастают. Таким образом, падение тел только увеличивает черную дыру, поэтому ее иногда сравнивают с бездонной пропастью. Черную дыру нельзя ничем заполнить! Возможно, когда-нибудь ученым удастся разгадать, что происходит внутри черной дыры. А сейчас попробуем подойти к краю этой бездонной пропасти и попытаемся заглянуть внутрь.
Звезды
До Солнца - 150 000 000 километров.
Это в 270 000 раз ближе, чем до самой близкой, исключая само Солнце, звезды. Ясно, почему очень многое, что известно о звездах, мы знаем благодаря нашему дневному светилу. Даже свет от ближайших звезд идет несколько лет, а сами звезды в самые мощные телескопы видны как точки. Впрочем, это не совсем так: звезды видны в виде крохотных дисков, но это связано с искажениями в телескопах, а не с увеличением. Звезд бесчисленное множество. Никто не в силах точно сказать, сколько существует звезд, тем более звезды рождаются и умирают. Можно лишь приближенно заявить, что в нашей Галактике около 150 000 000 000 звезд, а во Вселенной неизвестное число миллиардов галактик...
А вот сколько звезд можно увидеть на небе невооруженным глазом известно точнее: около 4,5 тысяч. Более того, задавшись определенным пределом яркости звезд, близким по доступности глазу, можно это число назвать точнее, чуть ли не до единиц. Яркие звезды давно посчитаны и занесены в каталоги. Яркость звезды (или, как говорят, ее блеск) характеризуется звездной величиной, которую астрономы давно умеют определять. Так что же такое звезды? Звезды - раскаленные газовые шары. Температура поверхности звезд различна.
У некоторых звезд она может достигать 30 000 К, а у других - лишь 3 000К. Наше Солнце имеет поверхность с температурой около 6 000 К. Надо оговориться, что говоря о поверхности, мы имеем в виду лишь видимую поверхность, так как никакой твердой поверхности у газового шара быть не может. Нормальные звезды гораздо больше планет, но главное - гораздо массивнее. Мы увидим, что есть во Вселенной странные звезды, имеющие типичные для планет размеры, но во много раз превосходящие последние по массе. Солнце в 750 раз массивнее всех остальных тел Солнечной системы.
Есть звезды, в сотни раз превышающие по размеру Солнце и во столько же раз уступающие ему в этом показателе. Однако, массы звезд меняются в гораздо более скромных пределах - от одной двенадцатой массы Солнца до 100 его масс. Может быть, есть и более тяжелые, но такие массивные звезды очень редки. Нетрудно догадаться, прочитав последние строки, что звезды очень сильно отличаются по плотности. Есть среди них такие, кубический сантиметр вещества которых перевешивает большой груженый океанский корабль. Вещество других звезд настолько разряжено, что его плотность меньше плотности того наилучшего вакуума, который достижим в земных лабораторных условиях.Звезда гигант имеет сравнительно низкую температура поверхности, около 5000 градусов. Огромный радиус, достигающий 800 солнечных и за счет таких больших размеров огромную светимость. Максимум излучения приходится на красную и инфракрасную область спектра, потому их и называют красными гигантами.
Звезды карлики являются противоположностью гигантов и включают в себя несколько различных подвидов:
Кроме перечисленных, существует еще несколько продуктов эволюции звезд:
Многообразие звезд во Вселенной неисчерпаемо, и возможно существуют еще звезды или продукты их эволюции, которые не вошли в эту классификацию.
Рождение звезд
Часто космос называют безвоздушным пространством, полагая, что он пуст. Однако это не так. В межзвездном пространстве есть пыль и газ (в основном, гелий и водород, причем последнего значительно больше). Во Вселенной существуют целые облака пыли и газа. Благодаря этим облакам нам не виден центр нашей Галактики. Облака эти могут иметь размеры в сотни световых лет, а их части могут сжиматься под действием сил гравитации. В процессе сжатия часть облака будет уплотняться, уменьшаясь в размерах и одновременно нагреваясь. Если масса сжимающегося вещества достаточна для того, чтобы в процессе сжатия внутри него начали происходить ядерные реакции, то из такого облака получается звезда. Надо заметить, что обычно из одного облака рождается целая группа звезд, которую принято называть звездным скоплением.
В этом облаке образуются отдельные уплотнения (мы их тоже в дальнейшем будем называть облаками), каждое из которых может породить звезду. Как было упомянуто, самые легкие звезды имеют массу в 12 раз меньшую, чем Солнечная. Если сжимающееся облако менее массивно, но не уступает Солнцу в массе больше, чем в сто раз, такие облака образуют так называемые коричневые карлики. Коричневые карлики еще холоднее красных звезд. Эти объекты довольно сильно разогреваются силами гравитационного сжатия и излучают много тепла (инфракрасное излучение), а светятся едва-едва. Но ядерные реакции в коричневых карликах не начинаются.
В конце концов, гравитационное сжатие останавливается давлением газа изнутри, перестают выделяться новые порции энергии, и коричневые карлики за сравнительно небольшие сроки остывают. Одним из последних открытым коричневым карликом является карлик в созвездии Гидры, его блеск составляет лишь 22,3, хотя он удален от Солнца всего на 33 световых года. Уникальность этого ближайшего коричневого карлика состоит в том, что все ранее открытые подобные объекты входили в двойные системы, а этот - одиночный. Замечен он только благодаря своей близости к Земле. Планета Юпитер, самая большая в Солнечной системе, в 80 раз легче самой маломассивной звезды и лишь в 8-10 раз легче коричневых карликов. Снова подмечаем роль массы объекта в его собственной судьбе. Если достаточно массивное для образования звезды облако настолько прогревается, что начинает активно излучать тепло и, может быть, слабо светиться темно-красным цветом (еще до начала ядерного синтеза), такое облако принято уже называть протозвездой (до-звездой). Как только температура в центре протозвезды достигнет 10 000 000 К, начинается ядерный синтез. Сжатие протозвезды останавливается световым давлением, она становится звездой. Опять-таки, от массы зависит, насколько быстро протозвезда превратится в звезду. Звезды типа Солнца тратят на эту стадию своего рождения 30 000 000 лет, звезды в три раза массивнее - 100 000 лет, а в десятеро менее массивные - 100 000 000 лет.
Жизнь звезд
Итак, немассивные звезды все делают медленнее, и рождаются и живут. Как мы помним, к таким легким звездам относятся красные звезды, которые имеют небольшие размеры и называются красными карликами. Красные карлики в десять раз меньше Солнца по размерам. Звезда типа Солнца носит название желтого карлика, такие звезды также относительно невелики. Самые тяжелые и большие нормальные звезды называются голубыми гигантами. В молодости звезда еще окружена своим родительским облаком, которое в виде газового или газопылевого диска вращается вокруг нее.
При этом звездный ветер - поток всевозможных частиц, вырывающихся с поверхности звезды с большими скоростями, оказывает давление на вещество облака, пытаясь оттолкнуть его подальше. Так как облако имеет плоскую форму диска, то движение частиц в его плоскости под давлением звездного ветра затруднено. Вещество устремляется вдоль оси вращения звезды и облака, в двух противоположных направлениях. В этих направлениях вещества мало, и частицы облака почти беспрепятственно устремляются прочь от звезды. Так образуются часто наблюдаемые оттоки вещества от молодых звезд.
Конец жизни немассивных звезд
Чем массивнее была звезда, тем большее гелиевое ядро в ней образуется. Тем больше силы, стремящиеся его сжать. Тем больше давление в ядре и его температура. В большинстве звезд эта температура достаточна, чтобы начались ядерные реакции синтеза углерода из гелия. При большем повышении температуры могут проходить и реакции синтеза более тяжелых элементов. В самом общем случае, когда в ядре заканчивается все ядерное горючее, оно, не в силах больше сдерживать гравитационные силы, сжимается до размеров Земли. Оболочка звезды (верхние ее слои) отрываются от ядра, образуя таким образом так называемые планетарные туманности- внешние слои старых звезд. Ядро, достигнув весьма типичных для умирающих звезд размеров Земли, больше не может сжаться. Электроны, ранее принадлежавшие отдельным атомам, в такой плотной "упаковке" уже нельзя отнести к тому или иному конкретному ядру атома, они как бы становятся общими, свободно перемещаясь, как в металле.
Такое состояние электронов называется электронным газом, его давление и уравновешивает гравитационное сжатие. Мы получили маленькую и очень горячую звезду, которая носит название белого карлика, с огромной плотностью. Он медленно излучает запасенное тепло в пространство, после чего остывает и превращается в черного карлика - остывшую, умершую звезду. Одним из известнейших примеров белого карлика является Сириус В - спутник ярчайшей на небе звезды Сириус (Сириус А). Итак, красный гигант, расширившийся настолько, что потерял свои внешние слои, превращается в белого карлика c типичной для звезд массой и размерами, типичными для планет. Это - обычная судьба звезд, масса которых первоначально не превосходит 10 солнечных масс. Рассеявшиеся оболочки звезд могут снова в последствие пойти на образование порождающих звезды газовых облаков.
Гибель массивных звезд
Звезды большей массы заканчивают свою жизнь иначе. Гелиевое ядро в таких звездах, сжимаясь, нагревается. В нем начинается синтез углерода, образуется углеродное ядро. Оно тоже сжимается, начинается, в результате большего нагрева, синтез кислорода и т.д. В итоге, звезда начинает напоминать луковицу, в середине которой, на последней стадии цепи реакций вызревает железоникелевое ядро, в котором никакие реакции идти уже не могут, то есть образуется белый карлик. Но этот белый карлик увеличивается в массе, так как реакции в вышележащих слоях продолжаются. Когда этот карлик вырастает до массы в 1,4 солнечной, давление электронного газа не может в карлике удержать сил гравитации. Электроны как бы вдавливаются в протоны, образуя нейтроны, которые беспрепятственно сближаются (протонам не давала сближаться сила электростатического отталкивания, а нейтроны, напомним, заряда не имеют).
В секунду карлик уменьшается от размеров Земли до 10(!)км. Практически достигнув плотности ядерного вещества, карлик резко прекращает сжатие. Вещество такой плотности своим внутренним давлением (здесь участвуют особые ядерные силы отталкивания) в очередной раз за жизнь звезды останавливает гравитацию. Внешние слои образовавшейся нейтронной звезды в первое мгновение все еще продолжают падать по инерции к центру , увеличивая давление, следствием чего является возникновение ударных волн и выброс во внешние слои звезды огромного количества нейтрино. Это приводит к сбросу внешних слоев, к грандиозному взрыву, энергия которого сопоставима с энергией, излучаемой целой галактикой! Такой взрыв называют вспышкой сверхновой звезды . В процессе рассеивания в пространстве верхних слоев звезды, ее яркость падает, сверхновая угасает, а на месте вспышки можно разглядеть ее остаток - расширяющуюся туманность. Этот рисунок показывает развитие судьбы наших звезд. Около расширяющегося взрыва сверхновой появилась планетарная туманность в виде колечка, порожденная нижней звездой: желтые звезды "созревают" позже, чем голубые. Верхняя красная немассивная звездочка еще долго будет светить без катастроф, пока через много миллиардов лет тоже не породит планетарную туманность. Расширяющийся газ взрыва сверхновой также потом может войти в облако, где родится другая звезда. Только в этом облаке будут не только гелий и водород, но и остальные элементы, образовавшиеся на последних этапах жизни первой звезды и во время ее взрыва.
Одной из звезд "второго поколения" является наше Солнце. В центре взрыва остается чрезвычайно нагретая нейтронная звезда, имеющая размер нескольких километров. Если же от звезды после взрыва остается много вещества, так, что его масса более, чем в три раза превышает солнечную, вместо нейтронной звезды может образоваться удивительный объект - черная дыра. Сила тяжести на ее поверхности столь высока, что ее не может покинуть даже свет. Свойства таких звезд очень сложны, их изучение ведется теоретически самыми сложными математическими средствами. Увидеть же черную дыру нельзя - как было замечено, она не выпускает свет, даже самые высокоэнергетические фотоны. Дырами такие объекты прозваны потому, что все, слишком близко приблизившееся к ним, неминуемо падает на их поверхность, и ничто уже не может ее покинуть. Все вещество как бы пропадает в черной дыре безвозвратно.
Первоначальная масса звезды, из которой в конце получится черная дыра, в 30 и более раз превосходит массу Солнца. Очень частыми образованиями черные дыры являются в двойных звездах, об эволюции которых читайте на следующей странице. Нейтронные звезды и черные дыры объединяют в один класс звезд, которые называют релятивистскими. Свойства этих объектов можно описать лишь законами релятивистской физики. Ставя точку в этой части рассказа, подчеркнем в который раз зависимость судьбы небесных тел от их массы, воистину главной характеристики объектов во Вселенной. Немассивные звезды кончают жизнь, становясь белыми карликами и рассеивая в межзвездное пространство свои внешние слои.
Так образуются планетарные туманности. Массивные звезды, исчерпав весь перечень ядерных реакций, вспыхивают взрывом сверхновой, следствием которого является образование туманности другого типа. В центре взрыва остается нейтронная звезда или черная дыра, объяснить свойства которых берется только самая современная физика. И тому немало способствует существование двойных звездных систем.
Черные дыры
В научно популярной литературе, статьях о Вселенной часто можно встретить термин «черная дыра». У читателя, впервые прочитавшего это словосочетание, сразу возникает образ, скажем, отверстия в стене, отгораживающей темную комнату, иначе, обыкновенная дырка. Упоминание о дырах во Вселенной, первоначально также ассоциируется с неким отверстием в небесах. Последнее суждение отчасти верно, но физическая сущность черной дыры гораздо сложнее, чем может показаться на первый взгляд. Так что же такое черная дыра? В современной науке черной дырой принято называть область пространства-времени, в которой гравитационное поле (тяготение) столь сильно, что ни один объект (даже излучение) не может вырваться из нее. Название же «черная дыра» ввел в обиход в 1968 году американский физик Джон Уилер (John A. Wheeler) в своей статье об этих удивительных небесных объектах. Новый термин сразу стал популярен, заменив собой использовавшиеся до того названия «коллапсар» и «застывшая звезда». Значит, эти небесные объекты попросту подобие звезды (черные шары?), но с очень сильным полем тяготения? Но это будет слишком простым (и не совсем верным) описанием, пожалуй, самых таинственных объектов во Вселенной. Чтобы глубже понять, что же это такое, вернемся ненадолго во времена великого физика Исаака Ньютона, открывшего закон всемирного тяготения. Легенда о яблоке, упавшем на голову Ньютона, может носить спорный характер, но, как бы там ни было, гениальная догадка ученого позволила вывести закон об универсальной силе, действию которой подвержено абсолютно все! Поле тяготения действует не только на объемные тела, которые притягиваются друг к другу, но на микрочастицы и даже на свет. Это очень важный момент, самым кардинальным образом связанный с изучением свойств черных дыр. Первым, кто допустил существование невидимых звезд, был ученый 18-19 веков Пьер Симон Лаплас (1749 – 1827), знаменитый тем, что создал теорию образования планет Солнечной системы из разряженной материи (облака). О невидимых звездах Лаплас впервые написал в 1795 году. А современные ученые руководствуясь законом всемирного тяготения, пришли к выводу, что звезда с плотностью, равной плотности Земли и диаметром в 250 раз больше диаметра Солнца, не дает ни одному световому лучу достичь нас из-за своего тяготения; поэтому возможно, что самые яркие небесные тела во Вселенной оказываются по этой причине невидимыми.
В наше время доказать это может любой школьник, знающий основы физики. Действительно, чем больше космическое тело, тем большую скорость нужно набрать, чтобы навсегда покинуть его. Эта скорость называется второй космической, и для Земли равна 11 км/сек. Но вторая космическая скорость тем больше, чем больше масса и чем меньше радиус небесного тела, т.к. с увеличением массы тяготение увеличивается, а с ростом расстояния от центра оно ослабевает. На Солнце 2-я космическая скорость равна 620 км/сек, но на его поверхности. Если же представить, что Солнце сжали до радиуса 10 километров, оставив при этом массу прежней, то 2-я космическая скорость увеличится до половины скорости света или 150 тысяч километров в секунду! Значит, если радиус Солнца уменьшать еще дальше (оставляя массу неизменной), то наступит такой момент, когда вторая космическая скорость достигнет световой или 300 000 км/сек! Лаплас, конечно, не брал в расчет сжатие небесных тел, что играет самую важную роль в образовании черных дыр, но он позволил понять главное: небесное тело, на поверхности которого вторая космическая скорость превышает скорость света, становится невидимой для внешнего наблюдателя! Иначе, свет пытается вырваться в пространство, но гравитация не позволяет ему этого сделать, и со стороны мы можем видеть лишь черное пятно в космосе, проще говоря, некую дыру! Подобные выводы были сделаны современником Лапласа английским геологом Дж. Мичеллом в 1783 году, но его труды менее известны.
Итак, мы убедились, что могут существовать невидимые небесные тела, которые в реальности существуют, но не могут быть наблюдаемы с Земли в виду отсутствия излучения от них. Все это казалось убедительным до того, как научный мир не познакомился в начале 20 века с теорией еще одного великого физика – Альберта Эйнштейна. Но убедительность Лапласа и Митчела все же была шаткой по той простой причине, что в их времена еще не знали, что скорости выше скорости света в природе просто не существует. Общая теория относительности позволила сделать большой шаг к определению черной дыры в современном ее понимании. Чтобы понять суть различия между тяготением по Ньютону и тяготением по Эйнштейну, вернемся к опыту со сжатием Солнца. Закон Ньютона гласит, что при сжатии вдвое гравитация возрастает вчетверо, но Эйнштейну удалось блестяще доказать, что гравитация будет расти быстрее, и чем дальше мы сжимаем тело, тем быстрее будет расти гравитация. Если следовать ньютоновскому тяготению, то гравитация станет бесконечно большой, если радиус станет равным 0. Эйнштейн же нашел, что тяготение становится бесконечным при так называемом гравитационном радиусе небесного тела. Сфера описываемся таким радиусом, называется также сферой Шварцшильда. Иначе, тело не сожмется в точку, оно будет иметь определенные размеры, но гравитацию, стремящуюся к бесконечности. Гравитационный радиус напрямую зависит от массы небесного тела. Например, гравитационный радиус Земли равен 10мм (при настоящем – 6400км), а для Солнца 3000м (700000 км). Итак, теория гласит о том, что любое небесное тело (звезда, планета) сжавшееся до гравитационного радиуса, перестает быть источником излучения, т.к. свет или любое другое излучение не может покинуть данное тело по причине того, что 2-я космическая скорость от гравитационного радиуса и меньше будет выше скорости света. Остается один вопрос: что и каким образом может сжать звезду до гравитационного радиуса. Ответ: сама звезда! Пока звезда «живет» внутри ее происходят термоядерные реакции создающие потоки излучения к поверхности газового шара. Но вещество (водород) для реакций ограничено, и за время от нескольких десятков миллионов до миллиардов лет иссякает.
После того, как водородное топливо будет израсходовано, внутреннее давление создаваемое ранее реакциями исчезнет, и звезда начнет сжиматься под действием собственной гравитации примерно так, как мы сжимает руками большой кусок ваты. Некоторые звезды сжимаются очень быстро – катастрофически. Происходит так называемый гравитационный коллапс. Разрешив вопрос о сжатии звезд, мы подошли к самому главному – вопросу существования черных дыр. Мы выяснили, что теоретически такие объекты могут существовать, но как найти их практически? Ведь, по словам знаменитого философа Конфуция, приходится искать черную кошку в темной комнате, и неизвестно есть ли она там вообще. Поиск таинственных объектов начинался с рентгеновских источников излучения, т.е. тех, которые излучают всем известные лучи Рентгена, широко использующиеся в медицине для съемки костей и внутренних органов человека. У рентгеновских источников есть замечательное свойство: они излучают только при нагревании окружающего газа до сверх высоких температур. Но чтобы нагреть газ до такой температуры, нужно чтобы поле тяготения было очень сильным. Такими полями обладают сжавшиеся звезды (белые карлики, нейтронные звезды и…. черные дыры!). Но если белые карлики можно наблюдать непосредственно, то как вычислить черную дыру? Астрономы разрешили и эту задачу. Выяснилось, что если сжавшаяся звезда имеет массу в два раза превышающую массу Солнца, то самый вероятный кандидат в черные дыры. Измерить же массу небесного тела легче всего если он существует в паре с другим, проще говоря, в двойной системе по его орбитальному движению. Поиск подобных двойных систем, которые к тому же излучают в рентгене увенчался успехом. Астрономы нашли такую систему в созвездии Лебедя, выяснив что, по крайней мере, один из компонентов обладает массой, превышающей критическую, т.е. более двух солнечных масс. Созвездие Лебедя лучше всего наблюдать летом и осенью, когда оно видно прямо над головой. Объект был назван Лебедь Х-1, и является первым объектом – кандидатом в черные дыры. Он расположен на расстоянии 6000 световых лет от Земли и состоит из двух тел: нормальной звезды-гиганта массой около 20 солнц и невидимый объект массой 10 солнц, излучающий в рентгеновском диапазоне. Но позвольте, скажете вы, как же может излучать черная дыра, если мы только что говорили, что ничто не может покинуть ее! Да, это верно, но дело в том, что излучает не сама черная дыра, а лишь вещество, падающее на черную дыру. Именно по излучению падающего вещества мы можем оценивать присутствие черной дыры.
Обладая мощным тяготением, черная дыра забирает у своего компаньона часть вещества, как бы высасывает материю, которая по спирали устремляется к черной дыре. Чем ближе вытягиваемое вещество к черной дыре, тем сильнее оно разогревается и, наконец, начинает излучать в рентгеновском диапазоне, что и фиксируют земные приемники излучения. При достижении окрестностей гравитационного радиуса (откуда еще может вырваться излучение) газ разогревается до 10 миллионов градусов, а рентгеновская светимость этого газа в тысячи раз превосходит светимость Солнца во всех диапазонах! Вспышки излучения видны не менее, чем в 200 километрах от центра черной дыры, а ее действительные размеры составляют около 30 километров. Итак, черные дыры существуют, и в действительности представляют из себя чрезвычайно сжатую область пространства-времени (для простоты – сверхплотный шар), которую не способно покинуть никакое излучение. Следует отметить, что благодаря необычности черных дыр средства массовой информации спекулируют на их свойстве поглощать окружающее вещество. Пройдя около Земли, черная дыра вполне может своим тяготением изменить форму Земли и начать затягивать ее вещество внутрь себя. Но подобное событие крайне маловероятно, тем более, как было сказано, ближайшие из них находятся на расстоянии в несколько тысяч световых лет. Поэтому даже если допустить, что черная дыра вдруг направится к Земле, то достичь она сможет ее только через несколько тысяч лет, и это при том, что двигаться она будет со скоростью света. При этом должно соблюдаться условие точной направленности к Земле, что на таком расстоянии теряет всякий смысл. Поэтому с полной уверенностью можно сказать, что гибель от черной дыры человечеству не грозит…. Ведя рассказ о черных дырах, мы всегда говорили о внешнем наблюдателе, т.е. пытались обнаружить черную дыру извне.
А что произойдет с наблюдателем, если он вдруг окажется по ту сторону гравитационного радиуса, иначе именуемого горизонтом событий. Здесь начинается самое удивительное свойство черных дыр. Не зря, говоря о черных дырах, мы всегда упоминали время, точнее пространство-время. По теории относительности Эйнштейна, чем быстрее движется тело, тем больше становится его масса, но тем медленнее начинает идти время! На малых скоростях в нормальных условиях этот эффект незаметен, но если тело (космический корабль) движется со скоростью близкой к скорости света, то масса его увеличивается, а время замедляется! При скорости тела равной скорости света, масса обращается в бесконечность, а время останавливается! Об этом говорят строгие математические формулы. Вернемся к черной дыре. Представим себе фантастическую ситуацию, когда звездолет с космонавтами на борту приближается к гравитационному радиусу или горизонту событий. Понятно, что горизонт событий назван так потому, что мы может наблюдать какие-либо события (вообще что-то наблюдать) только до этой границы. Что за этой границей мы наблюдать не в состоянии. Тем не менее, находясь внутри корабля, приближающегося к черной дыре, космонавты будут чувствовать себя, как и раньше, т.к. по их часам время будет идти «нормально». Космический корабль спокойно пересечет горизонт событий, и будет двигаться дальше. Но поскольку скорость его будет близка к скорости света, то до центра черной дыры космический корабль достигнет, буквально, за миг.
А для внешнего наблюдателя космический корабль просто остановится на горизонте событий, и будет находиться там практически вечно! Таков парадокс колоссального тяготения черных дыр. Закономерен вопрос, а останутся ли живы космонавты, уходящие в бесконечность по часам внешнего наблюдателя. Нет. И дело вовсе не в громадном тяготении, а в приливных силах, которые у столь малого и массивного тела сильно меняются на малых расстояниях. При росте космонавта 1 м 70 см приливные силы у его головы будут гораздо меньше, чем у ног и его просто разорвет уже на горизонте событий. Итак, мы в общих чертах выяснили, что такое черные дыры, но речь пока шла о черных дырах звездной массы. В настоящее время астрономам удалось обнаружить сверхмассивные черные дыры, масса которых может составлять миллиард солнц! Сверхмассивные черные дыры по свойствам не отличаются от своих меньших собратьев. Они лишь гораздо массивнее и, как правило, находятся в центрах галактик – звездных островов Вселенной. В центре Нашей Галактики (Млечный Путь) тоже имеется сверхмассивная черная дыра. Колоссальная масса таких черных дыр позволят вести их поиск не только в Нашей Галактике, но и в центрах далеких галактик, находящихся на расстоянии миллионы и миллиарды световых лет от Земли и Солнца. Европейские и американские ученые провели глобальный поиск сверхмассивных черных дыр, которые, согласно современным теоретическим выкладкам, должны находиться в центре каждой галактики.
Современные технологии позволяют выявить наличие этих коллапсаров в соседних галактиках, но обнаружить их удалось совсем немного. Значит, либо черные дыры просто скрываются в плотных газопылевых облаках в центральной части галактик, либо они находятся в более отдаленных уголках Вселенной. Итак, черные дыры можно обнаружить по рентгеновскому излучению, испускаемому во время аккреции вещества на них, и чтобы произвести перепись подобных источников, в околоземное комическое пространство были запущены спутники с рентгеновскими телескопами на борту. Занимаясь поиском источников Х-лучей, космические обсерватории «Чандра» (Chandra) и «Росси» (Rossi) обнаружили, что небо заполнено фоновым рентгеновским излучением, и является в миллионы раз более ярким, чем в видимых лучах. Значительная часть этого фонового рентгеновского излучения неба должна исходить от черных дыр. Обычно в астрономии говорят о трех типах черных дыр. Первый — черные дыры звездных масс (примерно 10 масс Солнца). Они образуются из массивных звезд, когда в тех заканчивается термоядерное горючее. Второй — сверхмассивные черные дыры в центрах галактик (массы от миллиона до миллиардов солнечных). И наконец, первичные черные дыры, образовавшиеся в начале жизни Вселенной, массы которых невелики (порядка массы крупного астероида). Таким образом, большой диапазон возможных масс черных дыр остается незаполненным. Но где эти дыры? Заполняя пространство рентгеновскими лучами, они, тем не менее, не желают показывать свое истинное «лицо». Но чтобы построить четкую теорию связи фонового рентгеновского излучения с черными дырами, необходимо знать их количество. На данный момент космическим телескопам удалось обнаружить лишь небольшое количество сверхмассивных черных дыр, существование которых можно считать доказанным. Косвенные признаки позволяют довести количество наблюдаемых черных дыр, ответственных за фоновое излучение, до 15%. Приходится предполагать, что остальные сверхмассивные черные дыры просто прячутся за толстым слоем пылевых облаков, которые пропускают только рентгеновские лучи высокой энергии или же находятся слишком далеко для обнаружения современными средствами наблюдений. Поиск скрытых черных дыр — одна из главных задач современной рентгеновской астрономии. Последние прорывы в этой области, связанные с исследованиями при помощи телескопов «Чандра» и «Росси», тем не менее охватывают лишь низкоэнергетический диапазон рентгеновского излучения — приблизительно 2000–20 000 электрон-вольт (для сравнения, энергия оптического излучения — около 2 электрон-вольт). Существенные поправки в эти исследования может внести европейский космический телескоп «Интеграл» (Integral), который способен проникнуть в еще недостаточно изученную область рентгеновского излучения с энергией 20 000–300 000 электрон-вольт. Важность изучения этого типа рентгеновских лучей состоит в том, что хотя рентгеновский фон неба имеет низкую энергетику, но на этом фоне проявляются множественные пики (точки) излучения с энергией около 30 000 электрон-вольт. Ученые еще только приоткрывают завесу тайны того, что порождает эти пики, а «Интеграл» — первый достаточно чувствительный телескоп, способный найти подобные источники рентгеновских лучей. По предположению астрономов, лучи высокой энергии порождают так называемые Комптон-объекты (Compton-thick), то есть сверхмассивные черные дыры, окутанные пылевой оболочкой. Именно Комптон-объекты ответственны за пики рентгеновского излучения в 30 000 электрон-вольт на поле фонового излучения.
Но, продолжая исследования, ученые пришли к выводу, что Комптон-объекты составляют лишь 10% от того числа черных дыр, которые должны создавать пики высоких энергий. Это — серьезное препятствие для дальнейшего развития теории. Значит, недостающие рентгеновские лучи поставляют не Compton-thick, а обычные сверхмассивные черные дыры? Тогда как быть с пылевыми завесами для рентгеновских лучей низкой энергии.? Ответ, похоже, кроется в том, что многие черные дыры (Комптон-объекты) имели достаточно времени, чтобы поглотить весь газ и пыль, которые окутывали их, но до этого имели возможность заявить о себе рентгеновским излучением высокой энергии. После поглощения всего вещества такие черные дыры уже оказались неспособными генерировать рентгеновское излучение на горизонте событий. Становится понятно, почему эти черные дыры нельзя обнаружить, и появляется возможность отнести недостающие источники фонового излучения на их счет хотя черная дыра уже не излучает, но ранее созданное ей излучение продолжает путешествие по Вселенной. Тем не менее, вполне возможно, что недостающие черные дыры более скрыты, чем предполагают астрономы, то есть то, что мы не их видим, вовсе не значит, что их нет. Просто пока у нас не хватает мощности средств наблюдений, чтобы увидеть их. Тем временем ученые из NASA планируют расширить диапазон поиска скрытых черных дыр еще дальше во Вселенную. Именно там находится подводная часть айсберга, считают они. В течение нескольких месяцев исследования будут проводиться в рамках миссии «Свифт» (Swift). Проникновение в глубокую Вселенную позволит обнаружить прячущиеся черные дыры, найти недостающее звено для фонового излучения и пролить свет на их активность в раннюю эпоху Вселенной.
Медведь и солнце
Пятёрки
Развешиваем детские рисунки дома
Две лягушки
"Не жалею, не зову, не плачу…"