Данная презентация может быть использована для мзучения темы "Металлы. Алюминий"
Вложение | Размер |
---|---|
ahmadiev_9balyuminiy.pptx | 1.13 МБ |
Слайд 1
13 Алюминий Al 26,982 3s 2 3p 1 Алюминий — элемент главной подгруппы третьей группы третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 13. Обозначается символом Al . Относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости химический элемент в земной коре ( после кислорода и кремния). АлюминийСлайд 2
Простое вещество алюминий — лёгкий, парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- и электропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия . Внешний вид простого вещества
Слайд 3
История Впервые алюминий был получен датским физиком Гансом Эрстедом в 1825 году действием амальгамы калия на хлорид алюминия с последующей отгонкой ртути. Название элемента образовано от лат. aluminis — квасцы. Получение Современный метод получения был разработан независимо американцем Чарльзом Холлом и французом Полем Эру в 1886 году. Он заключается в растворении оксида алюминия Al 2 O 3 в расплаве криолита Na 3 AlF 6 с последующим электролизом с использованием расходуемых коксовых или графитовых электродов. Такой метод получения требует больших затрат электроэнергии, и поэтому оказался востребован только в XX веке. Для производства 1000 кг чернового алюминия требуется 1920 кг глинозёма, 65 кг криолита, 35 кг фторида алюминия, 600 кг анодной массы и 17 тыс. кВт·ч электроэнергии постоянного тока . В лабораторных условиях Лабораторный способ получения алюминия предложил Фридрих Вёлер в 1827 году: AlCl 3 +3K → 3KCl + Al (реакция протекает при нагревании) Возможно получение алюминия восстановлением из оксида углем при сильном нагреве. Таким способом могли получать алюминий в древности .
Слайд 4
Физические свойства Микроструктура алюминия на протравленной поверхности слитка, чистотой 99,9998 %, размер видимого сектора около 55×37 мм Металл серебристо-белого цвета, лёгкий плотность — 2,7 г/см³ температура плавления у технического алюминия — 658 °C, у алюминия высокой чистоты — 660 °C удельная теплота плавления — 390 кДж/кг температура кипения — 2500 °C удельная теплота испарения — 10,53 МДж/кг временное сопротивление литого алюминия — 10-12 кг/мм², деформируемого — 18-25 кг/мм², сплавов — 38-42 кг/мм² Твёрдость по Бринеллю — 24…32 кгс/мм² высокая пластичность: у технического — 35 %, у чистого — 50 %, прокатывается в тонкий лист и даже фольгу Модуль Юнга — 70 ГПа Алюминий обладает высокой электропроводностью (37·10 6 См/м) и теплопроводностью (203,5 Вт/(м·К)), 65 % от электропроводности меди, обладает высокой светоотражательной способностью. Слабый парамагнетик. Температурный коэффициент линейного расширения 24,58·10 −6 К −1 (20…200 °C). Температурный коэффициент электрического сопротивления 2,7·10 −8 K −1 . Алюминий образует сплавы почти со всеми металлами. Наиболее известны сплавы с медью и магнием (дюралюминий) и кремнием (силумин).
Слайд 5
Микроструктура алюминия на протравленной поверхности слитка, чистотой 99,9998 %, размер видимого сектора около 55×37 мм
Слайд 6
Нахождение в природе Природный алюминий состоит практически полностью из единственного стабильного изотопа 27 Al со следами 26 Al, радиоактивного изотопа с периодом полураспада 720 тыс. лет, образующегося в атмосфере при бомбардировке ядер аргона протонами космических лучей. По распространённости в земной коре Земли занимает 1-е среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Процент содержания алюминия в земной коре по данным различных исследователей составляет от 7,45 до 8,14 % от массы земной коры. В природе алюминий в связи с высокой химической активностью встречается почти исключительно в виде соединений. Некоторые из них: Бокситы — Al 2 O 3 · H 2 O (с примесями SiO 2 , Fe 2 O 3 , CaCO 3 ) Нефелины — KNa 3 [AlSiO 4 ] 4 Алуниты — ( Na,K ) 2 SO 4 ·Al 2 (SO 4 ) 3 ·4Al(OH) 3 Глинозёмы (смеси каолинов с песком SiO 2 , известняком CaCO 3 , магнезитом MgCO 3 ) Корунд (сапфир, рубин, наждак) — Al 2 O 3 Полевые шпаты — ( K,Na ) 2 O·Al 2 O 3 ·6SiO 2 , Ca [Al 2 Si 2 O 8 ] Каолинит — Al 2 O 3 ·2SiO 2 · 2H 2 O Берилл (изумруд, аквамарин) — 3ВеО · Al 2 О 3 · 6SiO 2 Хризоберилл (александрит) — BeAl 2 O 4 . Тем не менее, в некоторых специфических восстановительных условиях возможно образование самородного алюминия. В природных водах алюминий содержится в виде малотоксичных химических соединений, например, фторида алюминия. Вид катиона или аниона зависит, в первую очередь, от кислотности водной среды. Концентрации алюминия в поверхностных водных объектах России колеблются от 0,001 до 10 мг/л, в морской воде 0,01 мг/л.
Слайд 7
Химические свойства Гидроксид алюминия При нормальных условиях алюминий покрыт тонкой и прочной оксидной плёнкой и потому не реагирует с классическими окислителями: с H 2 O ( t° );O 2 , HNO 3 (без нагревания). Благодаря этому алюминий практически не подвержен коррозии и потому широко востребован современной промышленностью. Однако при разрушении оксидной плёнки (например, при контакте с растворами солей аммония NH 4 + , горячими щелочами или в результате амальгамирования), алюминий выступает как активный металл-восстановитель. Легко реагирует с простыми веществами: с кислородом, образуя оксид алюминия: 4Al + 3O 2 = 2Al 2 O 3 с галогенами (кроме фтора) [7] , образуя хлорид, бромид или иодид алюминия: 2Al + 3Hal 2 = 2AlHal 3 ( Hal = Cl , Br , I) с другими неметаллами реагирует при нагревании: со фтором, образуя фторид алюминия : 2Al + 3F 2 = 2AlF 3 с серой, образуя сульфид алюминия : 2Al + 3S = Al 2 S 3 с азотом, образуя нитрид алюминия: 2Al + N 2 = 2AlN с углеродом, образуя карбид алюминия : 4Al + 3С = Al 4 С 3 Сульфид и карбид алюминия полностью гидролизуются: Al 2 S 3 + 6H 2 O = 2Al(OH) 3 + 3H 2 SAl 4 C 3 + 12H 2 O = 4Al(OH) 3 + 3CH 4 Со сложными веществами: с водой (после удаления защитной оксидной пленки, например, амальгамированием или растворами горячей щёлочи): 2Al + 6H 2 O = 2Al(OH) 3 + 3H 2 со щелочами (с образованием тетрагидроксоалюминатов и других алюминатов): 2Al + 2NaOH + 6H 2 O = 2Na[ Al (OH) 4 ] + 3H 2 2( NaOH •H 2 O) + 2Al = 2NaAlO 2 + 3H 2 Легко растворяется в соляной и разбавленной серной кислотах: 2Al + 6HCl = 2AlCl 3 + 3H 2 2Al + 3H 2 SO 4 ( разб ) = Al 2 (SO 4 ) 3 + 3H 2 При нагревании растворяется в кислотах — окислителях, образующих растворимые соли алюминия: 8Al + 15H 2 SO 4 ( конц ) = 4Al 2 (SO 4 ) 3 + 3H 2 S + 12H 2 OAl + 6HNO 3 ( конц ) = Al (NO 3 ) 3 + 3NO 2 + 3H 2 O восстанавливает металлы из их оксидов (алюминотермия ): 8Al + 3Fe 3 O 4 = 4Al 2 O 3 + 9Fe2Al + Cr 2 O 3 = Al 2 O 3 + 2Cr
Слайд 8
Применение Широко применяется как конструкционный материал. Основные достоинства алюминия в этом качестве — лёгкость, податливость штамповке, коррозионная стойкость (на воздухе алюминий мгновенно покрывается прочной плёнкой Al 2 O 3 , которая препятствует его дальнейшему окислению), высокая теплопроводность, неядовитость его соединений. В частности, эти свойства сделали алюминий чрезвычайно популярным при производстве кухонной посуды, алюминиевой фольги в пищевой промышленности и для упаковки. Первые же три свойства сделали алюминий основным сырьем в авиационной и авиакосмической промышленности (в последнее время медленно вытесняется композитными материалами, в первую очередь, углеволокном). Основной недостаток алюминия как конструкционного материала — малая прочность, поэтому для упрочнения его обычно сплавляют с небольшим количеством меди и магния (сплав называется дюралюминий ). Электропроводность алюминия всего в 1,7 раза меньше, чем у меди, при этом алюминий приблизительно в 4 раза дешевле [12] за килограмм, но, за счёт в 3,3 раза меньшей плотности, для получения равного сопротивления его нужно приблизительно в 2 раза меньше по весу. Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при изготовлении проводников в чипах. Меньшую электропроводность алюминия (37 1/ ом ) по сравнению с медью (63 1/ ом ) компенсируют увеличением сечения алюминиевых проводников. Недостатком алюминия как электротехнического материала является наличие прочной оксидной плёнки, затрудняющей пайку. Благодаря комплексу свойств широко распространён в тепловом оборудовании. Алюминий и его сплавы сохраняют прочность при сверхнизких температурах. Благодаря этому он широко используется в криогенной технике. Высокий коэффициент отражения в сочетании с дешевизной и лёгкостью напыления делает алюминий идеальным материалом для изготовления зеркал. В производстве строительных материалов как газообразующий агент. Алитированием придают коррозионную и окалиностойкость стальным и другим сплавам, например клапанам поршневых ДВС, лопаткам турбин, нефтяным платформам, теплообменной аппаратуре, а также заменяют цинкование. Сульфид алюминия используется для производства сероводорода. Идут исследования по разработке пенистого алюминия как особо прочного и лёгкого материала.
Слайд 9
Кусок алюминия
Слайд 10
В качестве восстановителя Как компонент термита, смесей для алюмотермии В пиротехнике. Алюминий применяют для восстановления редких металлов из их оксидов или галогенидов. Ограничено применяется как протектор при анодной защите. Алюминий как добавка в другие сплавы Алюминий является важным компонентом многих сплавов. Например, в алюминиевых бронзах основные компоненты — медь и алюминий. В магниевых сплавах в качестве добавки чаще всего используется алюминий. Для изготовления спиралей в электронагревательных приборах используют (наряду с другими сплавами) фехраль ( Fe , Cr , Al ). Ювелирные изделия Когда алюминий был очень дорог, из него делали разнообразные ювелирные изделия. Так, Наполеон III заказал алюминиевые пуговицы, а Менделееву в 1889 г. были подарены весы с чашами из золота и алюминия. Мода на ювелирные изделия из алюминия сразу прошла, когда появились новые технологии его получения, во много раз снизившие себестоимость. Сейчас алюминий иногда используют в производстве бижутерии. В Японии алюминий используется в производстве традиционных украшений, заменяя серебро. Стекловарение В стекловарении используются фторид, фосфат и оксид алюминия. Пищевая промышленность Алюминий зарегистрирован в качестве пищевой добавки Е173 .
Слайд 11
Алюминиевое украшение для японских причёсок
Слайд 12
Алюминий и его соединения в ракетной технике Алюминий и его соединения используются в качестве высокоэффективного ракетного горючего в двухкомпонентных ракетных топливах и в качестве горючего компонента в твёрдых ракетных топливах. Следующие соединения алюминия представляют наибольший практический интерес как ракетное горючее: Порошковый алюминий как горючее в твердых ракетных топливах. Применяется также в виде порошка и суспензий в углеводородах. Гидрид алюминия. Боранат алюминия. Триметилалюминий. Триэтилалюминий. Трипропилалюминий.
Слайд 13
Токсичность Отличается незначительным токсическим действием, но многие растворимые в воде неорганические соединения алюминия сохраняются в растворённом состоянии длительное время и могут оказывать вредное воздействие на человека и теплокровных животных через питьевую воду. Наиболее ядовиты хлориды, нитраты, ацетаты, сульфаты и др. Для человека токсическое действие при попадании внутрь оказывают следующие дозы соединений алюминия (мг/кг массы тела): ацетат алюминия — 0,2-0,4; гидроксид алюминия — 3,7-7,3; алюминиевые квасцы — 2,9. В первую очередь действует на нервную систему (накапливается в нервной ткани, приводя к тяжёлым расстройствам функции ЦНС). Однако свойство нейротоксичности алюминия стали изучать с середины 1960-х годов, так как накоплению металла в организме человека препятствует механизм его выведения. В обычных условиях с мочой может выделяться до 15 мг элемента в сутки. Соответственно, наибольший негативный эффект наблюдается у людей с нарушенной выделительной функцией почек. Норматив содержания алюминия в воде хозяйственно-питьевого использования составляет 0,2 мг/л. При этом данная ПДК может быть увеличена до 0,5 мг/л главным государственным санитарным врачом по соответствующей территории для конкретной системы водоснабжения. По некоторым биологическим исследованиям поступление алюминия в организм человека было сочтено фактором в развитии болезни Альцгеймера, но эти исследования были позже раскритикованы и вывод о связи одного с другим опровергался.
Три коробки с орехами
Цветок или сорняк?
Груз обид
Тигрёнок на подсолнухе
Городецкая роспись