Фракталы — это прежде всего язык геометрии. Однако их главные элементы недоступны непосредственному наблюдению. В этом отношении они принципиально отличаются от привычных объектов евклидовой геометрии, таких, как прямая линия или окружность.
Вложение | Размер |
---|---|
![]() | 1.8 МБ |
Слайд 1
Фракталы Презентацию выполнила ученица 10 класса «к» Рогацкая ПолинаСлайд 2
Понятие «Фрактал» Фрактал ( лат. fractus — дробленый ) — термин, означающий геометрическую фигуру , обладающую свойством самоподобия , то есть составленную из нескольких частей, каждая из которых подобна всей фигуре целиком. В более широком смысле под фракталами понимают множества точек в евклидовом пространстве , имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа ), либо метрическую размерность, строго большую топологической .
Слайд 3
Понятия фрактал и фрактальная геометрия, появившиеся в конце 70-х, с середины 80-х прочно вошли в обиход математиков и программистов. Слово фрактал предложено Бенуа Мандельбротом в 1975 году для обозначения нерегулярных, но самоподобных структур, которыми он занимался. Фракталы — это прежде всего язык геометрии. Однако их главные элементы недоступны непосредственному наблюдению. В этом отношении они принципиально отличаются от привычных объектов евклидовой геометрии, таких, как прямая линия или окружность. Фракталы выражаются не в первичных геометрических формах, а в алгоритмах, наборах математических процедур.
Слайд 4
Слово «фрактал» не является математическим термином и не имеет общепринятого строгого математического определения. Оно может употребляться, когда рассматриваемая фигура обладает какими-либо из перечисленных ниже свойств: Обладает нетривиальной структурой на всех шкалах. В этом отличие от регулярных фигур (таких, как окружность, эллипс, график гладкой функции): если мы рассмотрим небольшой фрагмент регулярной фигуры в очень крупном масштабе, он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, на всех шкалах мы увидим одинаково сложную картину. Является самоподобной или приближённо самоподобной . Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую. Может быть построена при помощи рекурсивной процедуры.
Слайд 5
Фракталы в природе Многие объекты в природе обладают фрактальными свойствами, например побережья, облака, кроны деревьев, кровеносная система и система альвеол человека или животных.
Слайд 6
Фракталы в природе
Слайд 7
Фракталы в природе
Слайд 8
Геометрические фракталы Именно с них и начиналась история фракталов. Этот тип фракталов получается путем простых геометрических построений . Обычно при построении этих фракталов поступают так: берется набор отрезков, на основании которых будет строиться фрактал. Далее применяют набор правил, который преобразует их в какую-либо геометрическую фигуру. Далее к каждой части этой фигуры применяют опять тот же набор правил. С каждым шагом фигура будет становиться все сложнее и сложнее, и если мы проведем (по крайней мере, в уме) бесконечное количество преобразований - получим геометрический фрактал.
Слайд 9
Снежинка Коха Из геометрических фракталов очень интересным и довольно знаменитым является первый - снежинка Коха. Строится она на основе равностороннего треугольника. Каждая линия которого ___ заменяется на 4 линии каждая длинной в 1/3 исходной _/\_. Таким образом, с каждой итерацией длинна кривой увеличивается на треть. И если мы сделаем бесконечное число итераций - получим фрактал - снежинку Коха бесконечной длинны. Получается, что наша бесконечная кривая покрывает ограниченную площадь
Слайд 10
Треугольник Серпинского Для построения из центра равностороннего треугольника "вырежем" треугольник. Повторим эту же процедуру для трех образовавшихся треугольников (за исключением центрального) и так до бесконечности. Если мы теперь возьмем любой из образовавшихся треугольников и увеличим его - получим точную копию целого. В данном случае мы имеем дело с полным самоподобием .
Слайд 11
Лист
Слайд 12
Геометрические фракталы
Слайд 13
Алгебраические фракталы Вторая большая группа фракталов - алгебраические . Свое название они получили за то, что их строят, на основе алгебраических формул иногда весьма простых. Методов получения алгебраических фракталов несколько. Один из методов представляет собой многократный (итерационный) расчет функции Zn+1=f( Zn ), где Z - комплексное число, а f некая функция. Расчет данной функции продолжается до выполнения определенного условия. И когда это условие выполнится - на экран выводится точка. При этом значения функции для разных точек комплексной плоскости может иметь разное поведение: С течением времени стремится к бесконечности. Стремится к 0 Принимает несколько фиксированных значений и не выходит за их пределы. Поведение хаотично, без каких либо тенденций.
Слайд 15
Спасибо за внимание!
Золотой циркуль
Денис-изобретатель (отрывок)
Лев Николаевич Толстой. Индеец и англичанин (быль)
Для чего нужна астрономия?
Рисуем акварельное мороженое