Данная творческая работа написана по математике. В этой работе рассказывается об удивительном мире фракталов, которые мы можем встретить абсолютно везде и в математике, физике, биологии, литературном творчестве, на кухне. Также дана историческая справка, кто является основоположником.
Вложение | Размер |
---|---|
Творческий проект. | 79.5 КБ |
Фракталы
ВЫПОЛНИЛА: Гончарова Алина
ученица 11 класса МКОУ Черновской СОШ
Руководитель: Стаценко Л.Н.
-2013-
Актуальность
Интерес к проблеме обусловлен возросшей ролью фракталов не только в компьютерной графике, но и в других сферах деятельности. Вместе с тем сегодня фракталы еще не изучены до конца, хотя им находят все новое применение. Фракталы заставляют пересмотреть наши взгляды на геометрические свойства природных и искусственных объектов. Разрабатываемые на основе этих понятий теории открывают новые возможности в различных областях знаний, в том числе в информационных и коммуникационных технологиях.
Фрактал может выступать моделью сложных природных систем, таких, как кроны деревьев, горные хребты, береговые линии, поверхность Луны. Древовидные фракталы применяются для моделирования не только растений, но и бронхиального дерева, работы почек, кровеносной системы, а также для создания, максимально похожих на настоящие, виртуальных объектов (деревья, горные цепи, вода и т.д.). Они незаменимы при генерации искусственных облаков, гор, поверхности моря.
Изученность вопроса
Фракталы - понятия, вошедшие в научную картину мира сравнительно недавно, лишь в последней четверти ХХ века. В 1975 году французский математик Бенуа Мандельброт издал книгу «The fractal Geometry of Nature». С того времени слово «фрактал» стало модным, интерес к ним не угасает не только в кругу специалистов - физиков, математиков, биологов и т. д., но и среди людей, далеких от науки. Исследования, связанные с фракталами, меняют многие привычные представления об окружающем нас мире. Красота фракталов выявила новые закономерности эстетической гармонии мира, которую другими, неформальными средствами исследуют художники, архитекторы и композиторы.
Основная идея
Почему геометрию часто называют холодной и сухой? Одна из причин заключается в ее неспособности описать форму облака, горы, дерева или берега моря. Облака - это не сферы, горы не конусы, линии берега - это не окружности, и кора не является гладкой, и молния не распространяется по прямой.
Открытие фракталов произвело революцию не только в геометрии, но и в физике, химии, биологии. Фрактальные алгоритмы нашли применение и в информационных технологиях
Основная идея работы заключается в изучении, анализе и систематизации литературы и Интернет-ресурсов о фракталах, ознакомлении с историей фракталов, рассмотрении применения фракталов в различных областях науки и техники. Разработке алгоритмов построения геометрических и алгебраических фракталов в инструментальной среде программирования.
СОДЕРЖАНИЕ:
1.Термин
2.Классификация
3.Примеры
4. Применение
5.Результат работы
6. Используемая литература
Отец фракталов
Вплоть до 20 века шло накопление данных о таких странных объектах, без какой либо попытки их систематизировать. Так было, пока за них не взялся Бенуа Мандельброт - отец современной фрактальной геометрии и слова фрактал. Работая в IBM математическим аналитиком, он изучал шумы в электронных схемах, которые невозможно было описать с помощью статистики. Постепенно сопоставив факты, он пришел к открытию нового направления в математике - фрактальной геометрии.
Что же такое фрактал. Сам Мандельброт вывел слово fractal от латинского слова fractus, что означает разбитый (поделенный на части). И одно из определений фрактала - это геометрическая фигура, состоящая из частей и которая может быть поделена на части, каждая из которых будет представлять уменьшенную копию целого (по крайней мере, приблизительно).
Чтобы представить себе фрактал понаглядней рассмотрим пример, приведенный в книге Б.Мандельброта "The Fractal Geometry of Nature" ("Фрактальная геометрия природы") ставший классическим - "Какова длина берега Британии?". Ответ на этот вопрос не так прост, как кажется. Все зависит от длины инструмента, которым мы будем пользоваться. Померив берег с помощью километровой линейки мы получим какую-то длину. Однако мы пропустим много небольших заливчиков и полуостровков, которые по размеру намного меньше нашей линейки. Уменьшив размер линейки до, скажем, 1 метра - мы учтем эти детали ландшафта, и, соответственно длина берега станет больше. Пойдем дальше и измерим длину берега с помощью миллиметровой линейки, мы тут учтем детали, которые больше миллиметра, длина будет еще больше. В итоге ответ на такой, казалось бы, простой вопрос может поставить в тупик кого угодно - длина берега Британии бесконечна.
1.Термин
Следует отметить, что слово «фрактал» не является математическим термином и не имеет общепринятого строгого математического определения. Оно может употребляться, когда рассматриваемая фигура обладает какими-либо из перечисленных ниже свойств:
Обладает нетривиальной структурой на всех масштабах. В этом отличие от регулярных фигур (таких, как окружность, эллипс, график гладкой функции): если мы рассмотрим небольшой фрагмент регулярной фигуры в очень крупном масштабе, он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, на всех шкалах мы увидим одинаково сложную картину.
Является самоподобной или приближённо самоподобной.
Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую.
Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, снежинки, кровеносная система и система альвеол человека или животных.
Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера.
Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке (например, множество Кантора). Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы».
2.Классификация
Фракталы делятся на группы. Самые большие группы это:
* {геометрические фракталы}
* {алгебраические фракталы}
* {системы итерируемых функций}
* {стохастические фракталы.}
Геометрические фракталы.
Именно с них и начиналась история фракталов. Этот тип фракталов получается путем простых геометрических построений. Обычно при построении этих фракталов поступают так: берется "затравка" - аксиома - набор отрезков, на основании которых будет строиться фрактал. Далее к этой "затравке" применяют набор правил, который преобразует ее в какую-либо геометрическую фигуру. Далее к каждой части этой фигуры применяют опять тот же набор правил. С каждым шагом фигура будет становиться все сложнее и сложнее, и если мы проведем (по крайней мере, в уме) бесконечное количество преобразований - получим геометрический фрактал.
Алгебраические фракталы
Множество Мандельброта
Множество Жюлиа
Треугольники Серпинского
Геометрические фракталы
Кривая Коха (снежинка Коха)
Кривая Леви
Кривая Гильберта
Ломаная (кривая) дракона (Фрактал Хартера-Хейтуэя)
Множество Кантора
Дерево Пифагора
Круговой фрактал
Стохастические фракталы
Рукотворные фракталы
Природные фракталы
Детерминированные фракталы
Недетерминированные фракталы
3.Примеры
Самоподобные множества с необычными свойствами в математике
Начиная с конца XIX века, в математике появляются примеры самоподобных объектов с патологическими с точки зрения классического анализа свойствами. К ним можно отнести следующие:
множество Кантора — нигде не плотное несчётное совершенное множество. Модифицировав процедуру, можно также получить нигде не плотное множество положительной длины.
треугольник Серпинского и ковёр Серпинского — аналоги множества Кантора на плоскости.
губка Менгера — аналог множества Кантора в трёхмерном пространстве;
примеры Вейерштрасса и Ван дер Вардена нигде не дифференцируемой непрерывной функции.
кривая Коха — несамопересекающаяся непрерывная кривая бесконечной длины, не имеющая касательной ни в одной точке;
кривая Пеано — непрерывная кривая, проходящая через все точки квадрата.
траектория броуновской частицы также с вероятностью 1 нигде не дифференцируема. Её хаусдорфова размерность равна двум.
Рекурсивная процедура получения фрактальных кривых
Существует простая рекурсивная процедура получения фрактальных кривых на плоскости. Зададим произвольную ломаную с конечным числом звеньев, называемую генератором. Далее, заменим в ней каждый отрезок генератором (точнее, ломаной, подобной генератору). В получившейся ломаной вновь заменим каждый отрезок генератором. Продолжая до бесконечности, в пределе получим фрактальную кривую. На рисунке справа приведены три первых шага этой процедуры для кривой Коха.
Примерами таких кривых служат:
кривая дракона,
кривая Коха,
кривая Леви,
кривая Минковского,
кривая Пеано.
4. Применение
Прагматичное использование принципа фрактальности мне продемонстрировал японский дизайнер Такеши Миякава.
Именно его фрактальная тумбочка стала для меня первым примером использования фракталов в реальном мире, а не только в виртуальном.
Наверное, дизайнер Такеши Миякава (Takeshi Miyakawa) в детстве мечтал стать математиком. И его тоже занимала мысль о практическом использовании фракталов. Иначе как объяснить этот предмет мебели: тумбочка Fractal 23 содержит 23 ящика самых разных размеров и пропорций, которые как-то ухитряются уживаться между собой внутри кубического корпуса, заполняя почти всё доступное им пространство.
Ни для кого не секрет, что японцы по жизни сильно ограничены в пространстве, в связи с чем, им приходится всячески изощряться в эффективном его использовании. Такеши Миякава показывает, как это можно делать одновременно эффективно и эстетично. Его фрактальный шкаф подтверждение тому, что использование фракталов в дизайне – это не только дань моде, но и гармоничное конструкторское решение в условиях ограниченного пространства.
Этот пример использования фракталов в реальной жизни, применительно к дизайну мебели показал мне, что фракталы реальны не только на бумаге в математических формулах и компьютерных программах. И, похоже, что принцип фрактальности природа использует повсеместно. Только нужно присмотреться к ней внимательней, и она проявит себя во всем своем великолепном изобилии и бесконечности бытия.
Мои догадки о фрактальных морских животных были не беспочвенны. Вот и первые представители. Осьминог – морское придонное животное из отряда головоногих.
Взглянув на эту фотографию, мне стало очевидно фрактальное строение его тела и присосок на всех восьми щупальцах этого животного. Присосок на щупальцах взрослого осьминога достигает до 2000.
Интересен то факт, что у осьминога три сердца: одно (главное) гонит голубую кровь по всему телу, а два других — жаберных — проталкивают кровь через жабры. Некоторые виды этих глубоководных фракталов ядовиты.
Приспосабливаясь и маскируясь под окружающую среду, осьминог обладает весьма полезной способностью изменять окраску.
Осьминогов считают самыми «умными» среди всех беспозвоночных. Узнают людей, привыкают к тем, кто их кормит. Интересно было бы посмотреть на осьминогов, которые легко поддаются дрессировке, имеют хорошую память и даже различают геометрические фигуры. Но век этих фрактальных животных недолог – максимум 4 года.
Человек использует чернила этого живого фрактала и других головоногих. Они пользуются спросом у художников за их стойкость и красивый коричневый тон. В средиземноморской кухне осьминог является источником витаминов B3, B12, калия, фосфора и селена. Но я думаю, что этих морских фракталов нужно уметь готовить, чтобы получать удовольствие от их употребления в виде пищи.
Кстати, нужно заметить, что осьминоги – хищники. Своими фрактальными щупальцами они удерживают жертву в виде моллюсков, ракообразных и рыбы. Жаль, если пищей этих морских фракталов становится вот такой красивый моллюск. По-моему, тоже типичный представитель фракталов морского царства.
Это родственник улиток, брюхоногий голожаберный моллюск Главк, он же Глаукус, он же Glaucus atlanticus, он же Glaucilla marginata. Это фрактал еще и необычен тем, что живет и передвигается под поверхностью воды, удерживаясь за счет поверхностного натяжения. Т.к. моллюск является гермафродитом, то после спаривания оба "партнера" откладывают яйца. Этот фрактал встречается во всех океанах тропического пояса.
Каждый из нас хотя бы раз в жизни держал в руках и с неподдельным детским интересом рассматривал морскую раковину.
Обычно раковины являются красивым сувениром, напоминающим о поездке на море. Когда смотришь на это спиралевидное образование беспозвоночных моллюсков, нет никаких сомнений в его фрактальной природе.
Мы, люди, чем-то напоминаем этих мягкотелых моллюсков, обитая в благоустроенных бетонных домах-фракталах, помещая и перемещая свое тело в быстрых автомобилях.
Еще одни типичнейшим представителем фрактального подводного мира является коралл.
В природе известно свыше 3500 разновидностей кораллов, в палитре которых различают до 350 цветовых оттенков.
Коралл – это материал скелета колонии коралловых полипов, тоже из семейства беспозвоночных. Их огромные скопления образуют целые коралловые рифы, фрактальный способ образования которых очевиден.Коралл с полной уверенностью можно назвать фракталом из морского царства.
Он также используется человеком в виде сувенира или сырья для ювелирных изделий и украшений. Но повторить красоту и совершенство фрактальной природы очень сложно.
В очередной раз, исполняя ритуал на кухне с ножом и разделочной доской, а потом, опустив нож в холодную воду, я вся в слезах в очередной раз придумывала, как бороться со слезоточивым фракталом, который практически ежедневно появляется на моих глазах.
Принцип фрактальности тот же, что и у знаменитой матрешки – вложенность. Именно поэтому фрактальность замечается не сразу. К тому же, светлый однородный окрас и его природная способность вызывать неприятные ощущения не способствуют пристальному наблюдению за мирозданием и выявлению фрактальных математических закономерностей.
А вот салатный лук сиреневого цвета в силу своего окраса и отсутствия слезоточивых фитонцидов навел на размышления о природной фрактальности этого овоща. Конечно, фрактал он незамысловатый, обычные окружности разного диаметра, можно даже сказать примитивнейший фрактал. Но не мешало бы вспомнить, что шар считается идеальной геометрической фигурой в пределах нашей Вселенной.
О полезных свойствах лука в Интернете опубликовано немало статей, но как-то никто не пытался изучать этот природный экземпляр с точки зрения фрактальности. Я могу только констатировать факт полезности применения фрактала в виде лука на своей кухне
Мое внимание привлекла история всемирно известной игрушки «Матрешка». Присмотревшись внимательней, с уверенностью можно сказать, что эта игрушка-сувенир - типичный фрактал.
Принцип фрактальности очевиден, когда все фигурки деревянной игрушки выстроены в ряд, а не вложены друг в друга.
Мои небольшие исследования истории появления этого игрушечного фрактала на мировом рынке показали, что корни у этой красавицы – японские. Матрешка всегда считалась исконно русским сувениром. Но оказалось, что она прототип японской фигурки старика-мудреца Фукурума, привезенного когда-то в Москву из Японии.
Но именно российский игрушечный промысел принес этой японской фигурке мировую славу. Откуда возникла идея фрактальной вложенности игрушки, лично для меня, так и осталось загадкой. Скорей всего автор этой игрушки использовал принцип вложенности фигурок друг в друга. А самый простой способ вложения – это подобные фигурки разных размеров, а это уже - фрактал.
Не менее интересный объект исследования представляет собой роспись игрушки-фрактала. Это декоративная роспись – хохлома. Традиционные элементы хохломы – это травяные узоры из цветов, ягод и веток.
Снова все признаки фрактальности. Ведь один и тот же элемент можно повторять несколько раз в разных вариантах и пропорциях. В итоге получается народная фрактальная роспись.
И если новомодной росписью компьютерных мышек, крышек ноутбуков и телефонов никого уже не удивишь, то фрактальный тюнинг автомобиля в народном стиле – это что-то новое в автодизайне. Остается только удивляться проявлению мира фракталов в нашей жизни таким необычным образом в таких обычных для нас вещах.
Каждый раз, разбирая цветную капусту на небольшие соцветия для бланширования в кипящей воде, я ни разу не обращала внимания на явные признаки фрактальности, пока у меня в руках не оказался этот экземпляр.
Типичный представитель фрактала из растительного мира красовался на моем кухонном столе.
При всей моей любви к цветной капусте мне все время попадались экземпляры с однородной поверхностью без видимых признаков фрактальности, и даже большое число соцветий, вложенных друг в друга, не давали мне повода увидеть в этом полезном овоще фрактал.
Но поверхность именно этого экземпляра с явно выраженной фрактальной геометрией не оставляла ни малейшего сомнения во фрактальном происхождении этого вида капусты.
Очередной поход в гипермаркет только подтвердил фрактальный статус капусты. Среди огромного числа экзотических овощей красовался целый ящик с фракталами. Это была Романеску, или романская брокколи, цветная коралловая капуста
Оказывается, дизайнеры и 3D-художники восторгаются ее экзотическими формами, похожими на фракталы.
Капустные почки нарастают по логарифмической спирали. Первые упоминания о капусте романеску пришли из Италии 16-го века.
А капуста броколли совсем не частая гостья в моем рационе, хотя по содержанию полезных веществ и микроэлементов она превосходит цветную капусту в разы. Но ее поверхность и форма настолько однородны, что мне никогда не приходило в голову увидеть в ней овощной фрактал.
Увидев ажурные поделки в технике квиллинг, меня никогда не покидало ощущение, что что-то они мне напоминают. Повторение одних и тех же элементов в разных размерах – конечно же, это принцип фрактальности.
Посмотрев очередной мастер-класс по квилингу, не осталось даже сомнений в фрактальности квиллинга. Ведь для изготовления различных элементов для поделок из квиллинга используется специальная линейка с окружностями разного диаметра. При всей красоте и неповторимости изделий, это - невероятно простая техника.
Почти все основные элементы для поделок в квиллинге делаются из бумаги. Чтобы запастись бумагой для квиллинга бесплатно, проведите дома ревизию своих книжных полок. Наверняка, там вы обнаружите пару-тройку ярких глянцевых журналов.
Инструменты для квиллинга просты и недороги. Все что вам необходимо для выполнения любительских работ в стиле квиллинг, вы можете найти среди своих домашних канцелярских принадлежностей.
А история квиллинга начинается в 18 веке в Европе. В эпоху Ренессанса монахи из французских и итальянских монастырей с помощью квиллинга украшали книжные обложки и даже не подозревали о фрактальности изобретенной ими техники бумагокручения. Девушки из высшего общества даже проходили курс по квиллингу в специальных школах. Вот так эта техника начала распространяться по странам и континентам.
Этот мастер-класс видео квиллинг по изготовлению роскошного оперения можно даже назвать "фракталы своими руками". С помощью фракталов из бумаги получаются чудесный эксклюзивные открытки-валентики и много разных других интересных вещей. Ведь фантазия, как и природа неисчерпаема.
5.Результат работы
Рассмотрены и изучены различные области наук, в которых видны проявления фракталов. Написан реферат, в котором рассмотрены применения фракталов в различных областях науки и техники, использование их в компьютерной графике. Создана мини-презентация, отображающая красоту и многообразие фракталов. Основные положения данной работы доложены и обсуждены на школьной научно-практической конференции.
В своей работе я кратко изложила информацию о фракталах их истории, применении фракталов в различных областях науки и техники и их роли в современной компьютерной графике.
Фрактальная геометрия постепенно проникает в образовательный процесс школы через информатику. Также, в наше время предпринимаются попытки обоснования искусства с точки зрения фракталов.
Фракталы бесконечной сложности и красоты могут быть сгенерированы простыми формулами на простых домашних компьютерах.
Значение открытия фракталов для науки трудно переоценить. Создание практически точных моделей окружающей среды позволит точнее рассмотреть и оценить факторы, влияющие на ее состояние и развитие.
Теория фракталов используется и при изучении структуры Вселенной. Появляются теории о том, что наша Вселенная - фрактал. Возможно, именно фракталы раскроют тайну бесконечности нашей Вселенной.
В своей работе мы кратко изложили информацию о фракталах их истории, применении фракталов в различных областях науки и техники и их роли в современной компьютерной графике.
Фрактальная геометрия постепенно проникает в образовательный процесс школы через информатику. Также, в наше время предпринимаются попытки обоснования искусства с точки зрения фракталов.
6. Используемая литература
А. А. Кириллов Повесть о двух фракталах — Летняя школа «Современная математика». — Дубна, 2007.
Мандельброт Б. Фрактальная геометрия природы. — М.: «Институт компьютерных исследований», 2002.
Пайтген Х.-О., Рихтер П. Х. Красота фракталов. — М.: «Мир», 1993.
Федер Е. Фракталы. — М: «Мир», 1991.
Фоменко А. Т. Наглядная геометрия и топология. — М.: изд-во МГУ, 1993.
Фракталы в физике. Труды 6-го международного симпозиума по фракталам в физике, 1985. — М.: «Мир», 1988.
Шредер М. Фракталы, хаос, степенные законы. Миниатюры из бесконечного рая — Ижевск: «РХД», 2001.
Кроновер Р. М. Фракталы и хаос в динамических системах. Основы теории.
Мандельброт Бенуа, Ричард Л. Хадсон (Не)послушные рынки: фрактальная революция в финансах = The Misbehavior of Markets — М.: «Вильямс», 2006.
Голубая лягушка
Девчата
"Портрет". Н.В. Гоголь
Пустой колос голову кверху носит
Астрономический календарь. Апрель, 2019