Данная работа позволяет расширить представление о теореме Пифагора.Работа была выполнена для участия в школьной научно-практической конференции.
Вложение | Размер |
---|---|
tvorcheskaya_rabota_po_teme_-_nestandartnye_dokazatelstva_teoremy_pifagora.pptx | 435.35 КБ |
Слайд 1
Творческая работа по теме : Нестандартные доказательства теоремы Пифагора Автор : Полковников Г.Д.Слайд 2
Доказательства На данный момент в научной литературе зафиксировано 367 доказательств данной теоремы. Вероятно, теорема Пифагора является единственной теоремой со столь внушительным числом доказательств. Такое многообразие можно объяснить лишь фундаментальным значением теоремы для геометрии. Разумеется, концептуально все их можно разбить на малое число классов. Самые известные из них: доказательства методом площадей, аксиоматические и экзотические доказательства (например, с помощью дифференциальных уравнений).
Слайд 3
Через подобные треугольники Следующее доказательство алгебраической формулировки — наиболее простое из доказательств, строящихся напрямую из аксиом. В частности, оно не использует понятие площади фигуры. Пусть ABC есть прямоугольный треугольник с прямым углом C . Проведём высоту из C и обозначим её основание через H . Треугольник ACH подобен треугольнику ABC по двум углам. Аналогично, треугольник CBH подобен ABC . Введя обозначения : |BC|=a, |AC|=b, |AB|=c Получаем : = = . Что эквивалентно =c*|AH|. Сложив получаем *(|HB|+|AH|)= Или , что и требовалось доказать.
Слайд 4
Доказательство через равнодополняемость Расположим четыре равных прямоугольных треугольника так, как показано на рисунке Четырёхугольник со сторонами c является квадратом, так как сумма двух острых углов 90°, а развёрнутый угол — 180°. Площадь всей фигуры равна, с одной стороны, площади квадрата со стороной (a+b), а с другой стороны, сумме площадей четырёх треугольников и площади внутреннего квадрата. (a+b)^2=4* +c^2 a^2+ab+b^2=2ab+c^2 Что и требовалось доказать.
Слайд 5
Доказательство Евклида (1 часть) Идея доказательства Евклида состоит в следующем: попробуем доказать, что половина площади квадрата, построенного на гипотенузе, равна сумме половин площадей квадратов, построенных на катетах, а тогда и площади большого и двух малых квадратов равны. Рассмотрим чертеж. На нём мы построили квадраты на сторонах прямоугольного треугольника и провели из вершины прямого угла С луч s перпендикулярно гипотенузе AB, он рассекает квадрат ABIK, построенный на гипотенузе, на два прямоугольника — BHJI и HAKJ соответственно. Оказывается, что площади данных прямоугольников в точности равны площадям квадратов, построенных на соответствующих катетах. Попытаемся доказать, что площадь квадрата DECA равна площади прямоугольника AHJK Для этого воспользуемся вспомогательным наблюдением: Площадь треугольника с той же высотой и основанием, что и данный прямоугольник, равна половине площади заданного прямоугольника. Это следствие определения площади треугольника как половины произведения основания на высоту. Из этого наблюдения вытекает, что площадь треугольника ACK равна площади треугольника AHK (не изображённого на рисунке), которая, в свою очередь, равна половине площади прямоугольника AHJK.
Слайд 6
Доказательство Евклида (2 часть) Докажем теперь, что площадь треугольника ACK также равна половине площади квадрата DECA. Единственное, что необходимо для этого сделать, — это доказать равенство треугольников ACK и BDA (так как площадь треугольника BDA равна половине площади квадрата по указанному выше свойству). Равенство это очевидно: треугольники равны по двум сторонам и углу между ними. Именно — AB=AK, AD=AC — равенство углов CAK и BAD легко доказать методом движения: повернём треугольник CAK на 90° против часовой стрелки, тогда очевидно, что соответствующие стороны двух рассматриваемых треугольников совпадут (ввиду того, что угол при вершине квадрата — 90°). Тем самым мы доказали, что площадь квадрата, построенного на гипотенузе, слагается из площадей квадратов, построенных на катетах. Данное доказательство также получило название «Пифагоровы штаны».
Слайд 7
Доказательство Леонардо да Винчи Главные элементы доказательства — симметрия и движение. Рассмотрим чертёж, как видно из симметрии, отрезок рассекает квадрат на две одинаковые части (так как треугольники и равны по построению). Пользуясь поворотом на 90 градусов против часовой стрелки вокруг точки , мы усматриваем равенство заштрихованных фигур и . Теперь ясно, что площадь заштрихованной нами фигуры равна сумме половин площадей маленьких квадратов (построенных на катетах) и площади исходного треугольника. С другой стороны, она равна половине площади большого квадрата (построенного на гипотенузе) плюс площадь исходного треугольника. Таким образом, половина суммы площадей маленьких квадратов равна половине площади большого квадрата, а следовательно сумма площадей квадратов, построенных на катетах равна площади квадрата, построенного на гипотенузе .
Слайд 8
Доказательство методом бесконечно малых Следующее доказательство при помощи дифференциальных уравнений часто приписывают известному английскому математику Харди, жившему в первой половине XX века. Рассматривая чертёж, показанный на рисунке, и наблюдая изменение стороны a , мы можем записать следующее соотношение для бесконечно малых приращений сторон с и a (используя подобие треугольников): = Пользуясь методом разделения переменных, находим : c*dc=a*da Более общее выражение для изменения гипотенузы в случае приращений обоих катетов : c*dc=a* da+b * db Интегрируя данное уравнение и используя начальные условия, получаем : c ^2=a^2+b^2+constant. a=b=c=0 , следовательно constant=0 . Таким образом, мы приходим к желаемому ответу : c^2=a^2+b^2. Как нетрудно видеть, квадратичная зависимость в окончательной формуле появляется благодаря линейной пропорциональности между сторонами треугольника и приращениями, тогда как сумма связана с независимыми вкладами от приращения разных катетов . Более простое доказательство можно получить, если считать, что один из катетов не испытывает приращения (в данном случае катет ). Тогда для константы интегрирования получим : a=0 , следовательно c^2=b^2=constant .
Притча о гвоздях
Акварельные гвоздики
Невидимое письмо
Анатолий Кузнецов. Как мы с Сашкой закалялись
Мост из бумаги для Киры и Вики