Данная работа посвящена измерению углов на модели плоскости Лобачевского и созданию программы, позволяющей измерять углы.
Вложение | Размер |
---|---|
deyneko_stanislav_izmerenie_uglov_na_modeli_ploskosti_lobachevskogo.doc | 257.5 КБ |
Муниципальное образовательное учреждение
«Седельниковская общеобразовательная школа №1»
Седельниковского муниципального района Омской области
Научное общество учащихся «Поиск»
Измерение углов на модели плоскости Лобачевского
Автор работы: Дейнеко
Станислав Игоревич
Класс: 11б
Школа: Седельниковская
Общеобразовательная школа №1
Руководитель работы:
Дресвянникова Светлана
Аркадьевна
Учитель математики
Седельниково, 2012
Оглавление
Введение…………………………………………………………………………...3
Глава I. О моделях плоскости Лобачевского………………………………….5
п.1.1 Наиболее известные модели плоскости Лобачевского …………….…..5
Глава II. Измерение углов на карте Бельтрами-Клейна…………………….…7
п.2.1 Вывод формулы вычисления углов между прямыми….………………...7
п.2.2 Описание программы вычисления углов между прямыми на карте Бельтрами-Клейна ………………………………………………………………11
Заключение……………………………………………………………………….14
Список использованной литературы…………………………………………...15
Введение
Известно, что кроме евклидовой геометрии существуют и другие – неевклидовы. Одна из них – геометрия Лобачевского. Аксиоматика геометрии Лобачевского отличается от аксиоматики геометрии Евклида только лишь в одном, правда, очень существенном пункте. В этой геометрии содержатся все четыре группы аксиом абсолютной геометрии, а аксиома параллельности заменена ее отрицанием, а именно следующей аксиомой.
Через данную точку Р, не лежащую на прямой АВ, проходят, по крайней мере, две прямые, лежащие в плоскости, определяемой прямой АВ и точкой Р, и не пересекающие прямую АВ [1, с.291].
Для доказательства непротиворечивости неевклидовых геометрий пользуются методом создания моделей, в которых реализуется данная аксиоматика. Так, для геометрии Лобачевского, были созданы модели Э.Бельтрами, Ф.Клейна, А.Пуанкаре. Исследуя данные интерпретации, мы задались вопросом: каким образом измеряются углы на карте Бельтрами-Клейна. Этот вопрос и явился проблемой нашего исследования.
Обосновать актуальность исследования можно тем, что данная проблема в научной литературе недостаточно разработана и изучена.
Цели работы:
Объектом исследования является одна из моделей плоскости Лобачевского – карта Бельтрами-Клейна.
Предметом – измерение углов между прямыми на этой модели.
Задачи исследования:
Глава I. О моделях плоскости Лобачевского
п.1.1 Наиболее известные модели плоскости Лобачевского
Геометрия Лобачевского изучает свойства «плоскости Лобачевского» (в планиметрии) и «пространства Лобачевского» (в стереометрии).
Плоскость Лобачевского — это плоскость, в которой определены прямые линии, а также движения фигур, подчиняющиеся всем аксиомам евклидовой геометрии, за исключением аксиомы о параллельных, которая заменяется аксиомой Лобачевского: «Через точку А вне прямой а можно провести в их плоскости α, по крайней мере, две прямые, не пересекающие данную» [1].
Для доказательства непротиворечивости системы аксиом пользуются методом создания моделей.
Моделью (интерпретацией) системы аксиом называется система определенных объектов и отношений между ними, для которых выполнены все аксиомы этой системы [2, с.110].
Созданием моделей для геометрии Лобачевского занимались такие ученые, как Э. Бельтрами, Ф.Клейн, А. Пуанкаре и другие. Итальянский математик Э. Бельтрами в 1868 г. заметил, что геометрия на куске плоскости Лобачевского совпадает с геометрией на поверхностях постоянной отрицательной кривизны, простейший пример которых представляет псевдосфера.
В 1871 г. Ф. Клейн указал такую модель плоскости Лобачевского, в которой за плоскость Лобачевского принимается внутренность некоторого круга К (граница исключена) (Рис.1).
Точки на этой модели рассматриваются в обычном смысле, а прямые − как произвольные хорды (концевые точки исключены). Эту интерпретацию также называют моделью Бельтрами-Клейна. На ней выполняются все аксиомы Лобачевского.
По формуле Клейна на этой модели можно вычислять расстояния между точками, измерив подходящие отрезки на модели.
Глава II. Измерение углов на карте Бельтрами-Клейна
п.2.1 Вывод формулы вычисления углов между прямыми
Для того чтобы выяснить, как измеряются углы в интерпретации Бельтрами-Клейна, необходимо вначале ввести определение меры угла на плоскости Лобачевского.
Мера угла (а,b) есть функция α его сторон а и b, удовлетворяющая следующим требованиям:
Обратимся вновь к карте Бельтрами. На этой модели углы искажаются, если иметь в виду евклидов смысл чертежа. Проекция угла на карту Бельтрами-Клейна будет больше, то есть будет превосходить величину оригинала (Рис. 2). При этом надо отметить следующее исключение. Любой угол с вершиной в центре круга Бельтрами моделируется в натуральную величину [3, с.113].
Известный способ вычисления углов на карте Бельтрами сводится к следующему. Над картой Бельтрами изображают полусферу.
Каждой хорде круга ставят в соответствие вертикальную полуокружность, расположенную на полусфере и отображающуюся в эту хорду при прямоугольном проектировании (Рис. 3).
Если хорды а и b пересекаются в точке М, то соответствующие им полуокружности a1 и b1 пересекаются в точке М1 на полусфере. На карте Бельтрами-Клейна величиной угла между прямыми а и b, которые пересеклись в точке М, объявляется число, равное углу между кривыми a1 и b1 в точке их пересечения М1. За такой угол принимается угол между касательными к кривым в этой точке.
По определению углом между двумя кривыми называется угол между касательными к этим кривым в точке их пересечения [4, с.152].
Пусть на карте Бельтрами-Клейна известен угол α между прямыми а и b, измеренный на модели (Рис.3). Для нахождения реальной его величины на плоскости Лобачевского требуется вычислить угол β на полусфере. Будем искать его как угол между векторами и , касательными к дугам вертикальных полуокружностей в точке М1 их пересечения.
Рассмотрим вначале частный случай: найдем угол между прямой и диаметром. Введем декартову систему координат с центром в точке О таким образом, чтобы диаметр совпадал с осью Оу. Точку пересечения кривых обозна-чим через М. Пусть нам известны также ОМ = a, R – радиус карты Бельтрами. Эти длины измерены на модели.
Рассмотрим вначале вектор (рис.4). Он касателен к полукругу радиуса R и лежит в плоскости yOz. Пусть длина вектора равна R: .
Тогда .
Единичный вектор:
Координаты вектора :
Обратимся теперь к вектору . Он касателен к полукругу радиуса r. Пусть длина вектора равна r: (рис.5)
Здесь
Проекция вектора на горизонтальную плоскость будет (рис.6)
Тогда единичный вектор
Координаты вектора :
Угол β между единичными векторами и найдем из формулы скалярного произведения векторов:
.
Теперь рассмотрим общий случай: вычислим угол между двумя произвольными прямыми (углом между двумя прямыми считается наименьший). Так как , то можно вычислить угол (α1+α2). то есть, для вывода общей формулы необходимо рассмотреть угол () на полусфере (Рис.7).
Тогда:
Таким образом, чтобы вычислить реальный угол между прямыми, необходимо знать градусные меры углов α1 и α2, измеренные на модели, которые образуются между заданными прямыми и диаметром, а также расстояние от центра карты Бельтрами до точки пересечения прямых. Этого достаточно, чтобы, не прибегая к стереометрии и не изображая полусферу над картой Бельтрами, вычислять углы между прямыми на плоскости Лобачевского.
п.2.2 Описание программы вычисления углов между прямыми
на карте Бельтрами-Клейна
Пользуясь выведенной формулой вычисления угла между прямыми на карте Бельтрами-Клейна, можно вычислить, например, сумму углов треугольника на плоскости Лобачевского (на карте Бельтрами) и наглядным образом показать, что она будет меньше 180˚.
В работе в качестве наглядного пособия (в среде Visual Basic) разработана программа, позволяющая вычислять сумму углов треугольника на плоскости Лобачевского по известным координатам вершин (на карте Бельтрами-Клейна).
Начальное окно программы выглядит следующим образом (рис. 8):
Для получения окружности, изображающей карту Бельтрами, необходимо нажать кнопку «Построить». Будет построена окружность с фиксированным радиусом и координатами центра (рис.9).
Далее, пользуясь кнопками со стрелками, и тем самым, изменяя координаты вершин, строим треугольник (рис.10).
Затем, для подсчета суммы углов в заданном треугольнике, необходимо нажать кнопку «Посчитать» (рис.11).
Полученное значение и будет являться суммой углов треугольника на плоскости Лобачевского.
Данную программу можно использовать в методических целях, демонстрируя зависимость сумм углов от форм и размеров треугольников из плоскости Лобачевского.
Заключение
Геометрия Лобачевского является теорией, имеющей строгое научное обоснование, и немалую роль при этом играют ее модели.
Одной из моделей, на которой реализуются все аксиомы геометрии Лобачевского, является модель Бельтрами-Клейна. На данной модели углы искажаются, если иметь в виду евклидов смысл чертежа.
В ходе исследования были выведены формулы для вычисления углов между прямыми на плоскости Лобачевского. Используя эти соотношения, можно, не отображая плоскость Лобачевского на пространство Евклида, находить величину угла на карте Бельтрами-Клейна, зная только радиус карты Бельтрами и расстояние от точки пересечения прямых до центра круга.
В качестве наглядного пособия (в среде Visual Basic) разработана программа, позволяющая вычислять сумму углов треугольника на плоскости Лобачевского по известным координатам вершин (на карте Бельтрами-Клейна) с использованием выведенной формулы.
\
Список использованной литературы
За чашкой чая
Рисуем лошадь акварелью
Отчего синичка развеселилась
Старинная английская баллада “Greensleeves” («Зеленые рукава»)
Нарисуем попугая цветными карандашами