Презентация по теме графическое представление информации
Вложение | Размер |
---|---|
prezentaciya_microsoft_office_powerpoint.pptx | 770.93 КБ |
Слайд 1
Кодирование графической информации Выполнил работу Федяев Иван ученик 9В класса учитель Белянская Т.М.Слайд 2
Термин "информатика" Термин "информатика" (франц. informatique ) происходит от французских слов information (информация) и automatique (автоматика) и дословно означает "информационная автоматика". Informatique = information + automatique Информатика = информация + автоматика
Слайд 3
Термин "информатика" Широко распространён также англоязычный вариант этого термина – " Сomputer science ", что означает буквально "компьютерная наука". Сomputer science Компьютерная наука
Слайд 4
Графическая информация Аналоговая форма Пространственная дискретизация сканирование Дискретная форма
Слайд 5
Аналоговая и дискретная форма представления информации Человек способен воспринимать и хранить информацию в форме образов (зрительных, звуковых, осязательных, вкусовых и обонятельных). Зрительные образы могут быть сохранены в виде изображений (рисунков, фотографий и так далее), а звуковые — зафиксированы на пластинках, магнитных лентах, лазерных дисках и так далее. Информация, в том числе графическая и звуковая, может быть представлена в аналоговой или дискретной форме. Примером аналогового представления графической информации может служить живописное полотно, цвет которого изменяется непрерывно, а дискретного - изображение, напечатанное с помощью струйного принтера и состоящее из отдельных точек разного цвета.
Слайд 6
Пространственная дискретизация Графические изображения из аналоговой (непрерывной) формы в цифровую ( дискретную ) преобразуются путем пространственной дискретизации . Пространственную дискретизацию изображения можно сравнить с построением изображения из мозаики (большого количества маленьких разноцветных стекол). Изображение разбивается на отдельные маленькие элементы (точки, или пиксели ), причем каждый элемент может иметь свой цвет ( красный , зеленый , синий и т. д.). Пиксель - минимальный участок изображения, для которого независимым образом можно задать цвет.
Слайд 7
ПИКСЕЛЬ – это минимальный участок изображения, для которого независимым образом можно задать цвет. РАЗРЕШАЮЩАЯ СПОСОБНОСТЬ растрового изображения определяется количеством точек как по горизонтали, так и по вертикали на единицу длины изображения. Чем меньше размер точки, тем больше разрешающая способность. Величина РАЗРЕШАЮЩЕЙ СПОСОБНОСТИ выражается в dpi ( количество точек в полоске изображения длиной 2,54 см (дюйм))
Слайд 8
Разрешающая способность Разрешающая способность растрового изображения определяется количеством точек как по горизонтали, так и по вертикали на единицу длины изображения. Чем меньше размер точки, тем больше разрешающая способность ( больше строк растра и точек в строке) и, соответственно, выше качество изображения. Величина разрешающей способности обычно выражается в dpi ( dot per inch - точек на дюйм ) , т. е. в количестве точек в полоске изображения длиной один дюйм ( 1 дюйм = 2,54 см )
Слайд 9
Сканирование Сканирование производится путем перемещения полоски светочувствительных элементов вдоль изображения. Качество растровых изображений, полученных в результате сканирования, зависит от разрешающей способности сканера, которую производители указывают двумя числами (например, 1200 х 2400 dpi )
Слайд 10
Сканирование Рис. Оптическое и аппаратное разрешение сканера Первое число является оптическим разрешением сканера и определяется количеством светочувствительных элементов на одном дюйме полоски. Второе число является аппаратным разрешением ; оно определяется количеством " микрошагов ", которое может сделать полоска светочувствительных элементов, перемещаясь на один дюйм вдоль изображения.
Слайд 11
Количество информации, которое используется для кодирования цвета одной точки изображения, называется ГЛУБИНОЙ ЦВЕТА
Слайд 12
Количество цветов в палитре ( N) и количество информации, необходимое для кодирования каждой точки ( I ) , связаны между собой и могут быть вычислены по формуле: N=2 I Глубина цвета Растровое изображение представляет собой совокупность точек (пикселей) разных цветов. Для черно-белого изображения информационный объем одной точки равен одному биту (либо черная, либо белая – либо 1, либо 0). Для четырех цветного – 2 бита. Для 8 цветов необходимо – 3 бита. Для 16 цветов – 4 бита. Для 256 цветов – 8 бит (1 байт) и т.д.
Слайд 13
Наиболее распространенными глубинами цвета являются 4,8,16, и 24 бита на точку. Зная глубину цвета, можно по формуле вычислить количество цветов в палитре
Слайд 14
Глубина цвета Каждый цвет можно рассматривать как возможное состояние точки. Количество цветов N в палитре и количество информации I , необходимое для кодирования цвета каждой точки, связаны между собой и могут быть вычислены по формуле: N=2 I (1.1) Количество информации, необходимое для кодирования цвета каждой точки: 2 = 2 I => 2 1 = 2 I => I = 1 бит. Количество информации , которое используется для кодирования цвета точки изображения , называется глубиной цвета.
Слайд 15
Глубина цвета Наиболее распространенными значениями глубины цвета при кодировании цветных изображений являются 4, 8, 16 или 24 бита на точку. Глубина цвета и количество цветов в палитре Глубина цвета, I (битов) Количество цветов в палитре, N 4 2 4 =16 8 2 8 = 256 16 2 16 =65 536 24 2 24 = 16 777 216
Слайд 16
Глубина цвета и палитра цветов Для черно-белого изображения информационный объем одной точки равен одному биту (либо черная, либо белая – либо 1, либо 0). Для четырех цветного – 2 бита. Для 8 цветов необходимо – 3 бита. Для 16 цветов – 4 бита. Для 256 цветов – 8 бит (1 байт).
Слайд 17
Кодирование растровых изображений В результате пространственной дискретизации графическая информация представляется в виде растрового изображения , которое формируется из определенного количества строк, содержащих , в свою очередь, определенное количество точек (пикселей) разных цветов. Рис. Растровое изображение темного прямоугольника на светлом фоне
Слайд 18
Растровые изображения на экране монитора Качество изображения на экране монитора зависит от величины пространственного разрешения и глубины цвета. Пространственное разрешение экрана монитора определяется как произведение количества строк изображения на количество точек в строке. Монитор может отображать информацию с различными пространственными разрешениями (800х600, 1024х768, 1400х1050 и выше). Глубина цвета измеряется в битах на точку и характеризует количество цветов, которое могут принимать точки изображения. Количество отображаемых цветов может изменятся в широком диапазоне, от 256 (глубина цвета 8 битов) до более чем 16 миллионов (глубина цвета 24 бита).
Слайд 19
Растровые изображения на экране монитора Чем больше пространственное разрешение и глубина цвета, тем выше качество изображения. В операционных системах предусмотрена возможность выбора необходимого пользователю и технически возможного графического режима. Рассмотрим формирование на экране монитора растрового изображения, состоящего из 600 строк по 800 точек в каждой строке (всего 480 000 точек ) и глубиной цвета 8 битов. Двоичный код цвета всех точек хранится в видеопамяти компьютера (рис. 1), которая находится на видеокарте (рис. 2). Видеокарта устанавливается в слот расширения системной платы PCI или AGP . Монитор подключается к аналоговому выходу VGA или цифровому выходу DVI видеокарты.
Слайд 20
Палитры цветов в системах цветопередачи RGB, CMYK, HSB
Слайд 21
Цветовые модели Для представления цвета в виде числового кода используются две обратных друг другу цветовые модели: RGB или CMYK. Модель RGB используется в телевизорах, мониторах, проекторах, сканерах, цифровых фотоаппаратах… Основные цвета в этой модели: красный ( R ed ), зеленый ( G reen ), синий ( B lu e ). Цветовая модель CMYK используется в полиграфии при формировании изображений, предназначенных для печати на бумаге.
Слайд 22
True Color На практике же, для сохранения информации о цвете каждой точки цветного изображения в модели RGB обычно отводится 3 байта (т.е. 24 бита) - по 1 байту (т.е. по 8 бит) под значение цвета каждой составляющей. Таким образом, каждая RGB-составляющая может принимать значение в диапазоне от 0 до 255 ( всего 2 8 =256 значений ), а каждая точка изображения, при такой системе кодирования может быть окрашена в один из 16 777 216 цветов. Такой набор цветов принято называть True Color (правдивые цвета), потому что человеческий глаз все равно не в состоянии различить большего разнообразия.
Слайд 23
Палитра цветов в системе цветопередачи RGB С экрана монитора человек воспринимает цвет как сумму излучения трех базовых цветов ( red, green, blue) . Цвет из палитры можно определить с помощью формулы: Цвет = R + G + B , Где R, G, B принимают значения от 0 до max Так при глубине цвета в 24 бита на кодирование каждого из базовых цветов выделяется по 8 битов, тогда для каждого из цветов возможны N=2 8 =256 уровней интенсивности.
Слайд 24
Цветовая модель RGB Цветные изображения могут иметь различную глубину цвета, которая задается количеством битов, используемых для кодирования цвета точки. Если кодировать цвет одной точки изображения тремя битами (по одному биту на каждый цвет RGB), то мы получим все восемь различных цветов.
Слайд 25
Формирование цветов в системе RGB Цвет Формирование цвета Черный = 0+0+0 Белый = Rmax + Gmax + Bmax Красный = Rmax+0+0 Зеленый = Gmax + 0+0 Синий = Bmax+0+0 Голубой =0+ Gmax + Bmax Пурпурный = Rmax + 0 + Bmax Желтый = Rmax + Gmax+0 В системе RGB палитра цветов формируется путем сложения красного, зеленого и синего цветов
Слайд 26
Формирование цветов в системе CMYK Цвет Формирование цвета Черный = К=С+ M+Y= W- G – B - R Белый =W=(C=0 , M=0 , Y=0) Красный =R= Y+M=W - G - B Зеленый = G=Y+C=W - R - B Синий =B= M+C= W- R -G Голубой = C=W- R = G+B Пурпурный =M=W - G = R+B Желтый =Y=W - B = R+G В системе цветопередачи CMYK палитра цветов формируется путем наложения голубой, пурпурной, желтой и черной красок.
Слайд 27
Палитра цветов в системе цветопередачи CMYK При печати изображений на принтере используется палитра цветов CMYK . Основными красками в ней являются Cyan – голубая, Magenta – пурпурная и Yellow - желтая. Система CMYK в отличие от RGB , основана на восприятии не излучаемого, а отражаемого света. Так, нанесенная на бумагу голубая краска поглощает красный цвет и отражает зеленый и синий цвета. Цвета палитры CMYK можно определить с помощью формулы: Цвет = C + M + Y, Где C, M и Y принимают значения от 0 % до 100%
Слайд 28
Палитра цветов в системе цветопередачи HSB Система цветопередачи HSB использует в качестве базовых параметров Оттенок цвета, Насыщенность, Яркость В системе цветопередачи HSB палитра цветов формируется путем установки значений оттенка цвета, насыщенности и яркости.
Слайд 29
Объем видеопамяти Информационный объем требуемой видеопамяти можно рассчитать по формуле: Объем видеопамяти I п = I x X x Y , где I п - информационный объем видеопамяти памяти в битах; X x Y - количество точек изображения ( X - количество точек по горизонтали, Y - по вертикали ); I –глубина цвета в битах на точку. Качество отображения информации на экране монитора зависит от размера экрана и размера пикселя. Зная размер диагонали экрана в дюймах (15", 17" и т. д.) и размер пикселя экрана (0,28 мм, 0,24 мм или 0,20 мм), можно оценить максимально возможное пространственное разрешение экрана монитора.
Слайд 30
Объем видеопамяти Пример : необходимый объем видеопамяти для графического режима с пространственным разрешением 800 X 600 точек и глубиной цвета 24 бита равен: I п = I x X x Y = 24 бита X 800 X 600=11 520 000бит= =1 440 000 байт= 1 406,25 Кбайт≈1,37 Мбайт Периодически, с определенной частотой, коды цветов точек вчитываются из видеопамяти точки отображаются на экране монитора. Частота считывания изображения влияет на стабильность изображения на экране. В современных мониторах обновление изображения происходит c частотой 75 и более раз в секунду , что обеспечивает комфортность восприятия изображения пользователем компьютера (человек не замечает мерцания изображения). Для сравнения можно напомнить, что частота смены кадров в кино составляет 24 кадра в секунду.
Слайд 31
Расчет объема видеопамяти Информационный объем требуемой видеопамяти можно рассчитать по формуле: I памяти =I * X * Y где I памяти – информационный объем видеопамяти в битах; X * Y – количество точек изображения (по горизонтали и по вертикали); I – глубина цвета в битах на точку. ПРИМЕР. Необходимый объем видеопамяти для графического режима с пространственным разрешением 800 х 600 точек и глубиной цвета 24 бита равен: I памяти = 24 * 600 * 800 = 11 520 000 бит = = 1 440 000 байт = 1 406, 25 Кбайт = 1, 37 Мбайт
Слайд 32
Вычислим объем видеопамяти Для того чтобы на экране монитора формировалось изображение, информация о каждой точке (код цвета точки) должна храниться в видеопамяти компьютера. Рассчитаем необходимый объем видеопамяти для одного из графических режимов. В современных компьютерах разрешение экрана обычно составляет 1280х1024 точек. Т.е. всего 1280 * 1024 = 1310720 точек. При глубине цвета 32 бита на точку необходимый объем видеопамяти: 32 *1310720 = 41943040 бит = 5242880 байт = 5120 Кб = 5 Мб.
Астрономический календарь. Июнь, 2019
Рождественские подарки от Метелицы
Как нарисовать портрет?
Астрономический календарь. Октябрь, 2018
Самарские ученые разработали наноспутник, который поможет в освоении Арктики