Проект знакомит с историей доказательства теоремы Пифагора, приводятся некоторые доказательства теоремы и подобраны задания по данной теме.
Вложение | Размер |
---|---|
7_sposobov_resheniya_kvadratnyh_uravneniy.doc | 471 КБ |
7_sposobov_resheniya_kvadratnyh_uravneniy.ppt | 486.5 КБ |
proekt_teorema_pifagora.doc | 302 КБ |
Муниципальное бюджетное общеобразовательное учреждение – основная общеобразовательная школа № 25
Автор:
Гапон Даниил, ученик 8 класса
Руководитель:
Хлыбова Наталья Александровна,
учитель математики
Армавир - 2011
Содержание.
I. История развития квадратных уравнений ……………………….2
1. Квадратные уравнения в Древнем Вавилоне………………………..2
2. Как составлял и решал Диофант квадратные уравнения…………...2
3. Квадратные уравнения в Индии……………………………………...3
4. Квадратные уравнения у ал- Хорезми ………………………………4
5. Квадратные уравнения в Европе XIII - XVII вв………………..........5
6. О теореме Виета ………………………………………………………5
II. Способы решения квадратных уравнений ……………………….6
III. Заключение…………………………………………………..............12
Литература……………………………………………………………….13
История развития квадратных уравнений.
1. Квадратные уравнения в Древнем Вавилоне.
Необходимость решать уравнения не только первой, но и второй степени еще в древности была вызвана потребностью решать задачи, связанные с нахождением площадей земельных участков и с земляными работами военного характера, а также с развитием астрономии и самой математики. Квадратные уравнения умели решать около 2000 лет до н. э. вавилоняне.
Применяя современную алгебраическую запись, можно сказать, что в их клинописных текстах встречаются, кроме неполных, и такие, например, полные квадратные уравнения:
х2 + х = ¾; х2 - х = 14,5
Правило решения этих уравнений, изложенное в вавилонских текстах, совпадает по существу с современным, однако неизвестно, каким образом дошли вавилоняне до этого правила. Почти все найденные до сих пор клинописные тексты приводят только задачи с решениями, изложенными в виде рецептов, без указаний относительно того, каким образом они были найдены.
Несмотря на высокий уровень развития алгебры в Вавилоне, в клинописных текстах отсутствуют понятие отрицательного числа и общие методы решения квадратных уравнений.
2. Как составлял и решал Диофант квадратные уравнения.
В «Арифметике» Диофанта нет систематического изложения алгебры, однако в ней содержится систематизированный ряд задач, сопровождаемых объяснениями и решаемых при помощи составления уравнений разных степеней.
При составлении уравнений Диофант для упрощения решения умело выбирает неизвестные.
Вот, к примеру, одна из его задач.
Задача 11. «Найти два числа, зная, что их сумма равна 20, а произведение - 96»
Диофант рассуждает следующим образом: из условия задачи вытекает, что искомые числа не равны, так как если бы они были равны, то их произведение равнялось бы не 96, а 100. Таким образом, одно из них будет больше половины их суммы, т.е. 10 + х, другое же меньше, т.е. 10 - х. Разность между ними 2х.
Отсюда уравнение:
(10 + х)(10 - х) = 96
или же:
100 - х2 = 96
х2 - 4 = 0 (1)
Отсюда х = 2. Одно из искомых чисел равно 12, другое 8. Решение х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа.
Если мы решим эту задачу, выбирая в качестве неизвестного одно из искомых чисел, то мы придем к решению уравнения
у(20 - у) = 96,
у2 - 20у + 96 = 0. (2)
Ясно, что, выбирая в качестве неизвестного полуразность искомых чисел, Диофант упрощает решение; ему удается свести задачу к решению неполного квадратного уравнения (1).
3. Квадратные уравнения в Индии.
Задачи на квадратные уравнения встречаются уже в астрономическом тракте «Ариабхаттиам», составленном в 499 г. индийским математиком и астрономом Ариабхаттой. Другой индийский ученный, Брахмагупта (VII в.), изложил общее правило решения квадратных уравнений, приведенных к единой канонической форме:
ах2 + bх = с, а > 0. (1)
В уравнении (1) коэфиценты, кроме а, могут быть и отрицательными. Правило Брахмагупты по существу совпадает с нашим.
В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится по поводу таких соревнований следующее: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Задачи часто облекались в стихотворную форму.
Вот одна из задач знаменитого индийского математика XII в. Бхаскары.
Задача 13.
«Обезьянок резвых стая А двенадцать по лианам…
Власть поевши, развлекалась. Стали прыгать, повисая…
Их в квадрате часть восьмая Сколько ж было обезьянок,
На поляне забавлялась. Ты скажи мне, в этой стае?»
Решение Бхаскары свидетельствует о том, что он знал о двузначности корней квадратных уравнений (рис. 3).
Соответствующее задаче 13 уравнение:
(x/8)2 + 12 = x
Бхаскара пишет под видом:
х2 - 64х = -768
и, чтобы дополнить левую часть этого уравнения до квадрата, прибавляет к обеим частям 322, получая затем:
х2 - 64х + 322 = -768 + 1024,
(х - 32)2 = 256,
х - 32 = ± 16,
х1 = 16, х2 = 48.
4. Квадратные уравнения у ал - Хорезми.
В алгебраическом трактате ал - Хорезми дается классификация линейных и квадратных уравнений. Автор насчитывает 6 видов уравнений, выражая их следующим образом:
1) «Квадраты равны корнями», т.е. ах2 + с = bх.
2) «Квадраты равны числу», т.е. ах2 = с.
3) «Корни равны числу», т.е. ах = с.
4) «Квадраты и числа равны корням», т.е. ах2 + с = bх.
5) «Квадраты и корни равны числу», т.е. ах2 + bx = с.
6) «Корни и числа равны квадратам», т.е. bx + с = ах2.
Для ал - Хорезми, избегавшего употребления отрицательных чисел, члены каждого их этих уравнений слагаемые, а не вычитаемые. При этом заведомо не берутся во внимание уравнения, у которых нет положительных решений. Автор излагает способы решения указанных уравнений, пользуясь приемами ал - джабр и ал - мукабала. Его решения, конечно, не совпадает полностью с нашим. Уже не говоря о том, что оно чисто риторическое, следует отметить, например, что при решении неполного квадратного уравнения первого вида
ал - Хорезми, как и все математики до XVII в., е учитывает нулевого решения, вероятно, потому, что в конкретных практических задачах оно не имеет значения. При решении полных квадратных уравнений ал - Хорезми на частных числовых примерах излагает правила решения, а затем и геометрические доказательства.
Приведем пример:
Задача 14. «Квадрат и число 21 равны 10 корням. Найти корень»
(подразумевается корень уравнения х2 + 21 = 10х).
Решение автора гласит примерно так: раздели пополам число корней, получишь 5, умножишь 5 само на себя, от произведения отними 21, останется 4. Извлеки корень из 4, получишь 2. Отними 2 от5, получишь 3, это и будет искомый корень. Или же прибавь 2 к 5, что даст 7, это тоже есть корень.
Трактат ал - Хорезми является первой, дошедшей до нас книгой, в которой систематически изложена классификация квадратных уравнений и даны формулы их решения.
5. Квадратные уравнения в Европе XIII - XVII вв.
Формулы решения квадратных уравнений по образцу ал - Хорезми в Европе были впервые изложены в « Книге абака», написанной в 1202 г. итальянским математиком Леонардо Фибоначчи. Этот объемистый труд, в котором отражено влияние математики, как стран ислама, так и Древней Греции, отличается и полнотой, и ясностью изложения. Автор разработал самостоятельно некоторые новые алгебраические примеры решения задач и первый в Европе подошел к введению отрицательных чисел. Его книга способствовала распространению алгебраических знаний не только в Италии, но и в Германии, Франции и других странах Европы. Многие задачи из « Книги абака» переходили почти во все европейские учебники XVI - XVII вв. и частично XVIII.
Общее правило решения квадратных уравнений, приведенных к единому каноническому виду:
х2 + bx = с,
при всевозможных комбинациях знаков коэффициентов b, с было сформулировано в Европе лишь в 1544 г. М. Штифелем.
Вывод формулы решения квадратного уравнения в общем виде имеется у Виета, однако Виет признавал только положительные корни. Итальянские математики Тарталья, Кардано, Бомбелли среди первых в XVI в. Учитывают, помимо положительных, и отрицательные корни. Лишь в XVII в. Благодаря труда Жирара, Декарта, Ньютона и других ученых способ решения квадратных уравнений принимает современный вид.
6. О теореме Виета.
Теорема, выражающая связь между коэффициентами квадратного уравнения и его корнями, носящая имя Виета, была им сформулирована впервые в 1591 г. следующим образом: «Если B + D, умноженное на A - A2, равно BD, то A равно В и равно D».
Чтобы понять Виета, следует вспомнить, что А, как и всякая гласная буква, означало у него неизвестное (наше х), гласные же В,D - коэффициенты при неизвестном. На языке современной алгебры вышеприведенная формулировка Виета означает: если имеет место
(а + b)х - х2 = ab,
т.е.
х2 - (а + b)х + аb = 0,
то
х1 = а, х2 = b.
Выражая зависимость между корнями и коэффициентами уравнений общими формулами, записанными с помощью символов, Виет установил единообразие в приемах решения уравнений. Однако символика Виета еще далека от современного вида. Он не признавал отрицательных чисел и по этому при решении уравнений рассматривал лишь случаи, когда все корни положительны.
Итак: Квадратные уравнения - это фундамент, на котором покоится величественное здание алгебры. Квадратные уравнения находят широкое применение при решении тригонометрических, показательных, логарифмических, иррациональных и трансцендентных уравнений и неравенств. Все мы умеем решать квадратные уравнения со школьной скамьи (8 класс), до окончания вуза.
В школьном курсе математики изучаются формулы корней квадратных уравнений, с помощью которых можно решать любые квадратные уравнения. Однако имеются и другие способы решения квадратных уравнений, которые позволяют очень быстро и рационально решать многие уравнения. Имеется десять способов решения квадратных уравнений. Подробно в своей работе я разобрала каждый из них.
Способы решения квадратных уравнений.
1. СПОСОБ: Разложение левой части уравнения на множители.
Решим уравнение х2 + 10х - 24 = 0. Разложим левую часть на множители:
х2 + 10х - 24 = х2 + 12х - 2х - 24 = х(х + 12) - 2(х + 12) = (х + 12)(х - 2).
Следовательно, уравнение можно переписать так:
(х + 12)(х - 2) = 0
Так как произведение равно нулю, то, по крайней мере, один из его множителей равен нулю. Поэтому левая часть уравнения обращается нуль при х = 2, а также при х = - 12. Это означает, что число 2 и - 12 являются корнями уравнения х2 + 10х - 24 = 0.
2. СПОСОБ: Метод выделения полного квадрата.
Решим уравнение х2 + 6х - 7 = 0. Выделим в левой части полный квадрат.
Для этого запишем выражение х2 + 6х в следующем виде:
х2 + 6х = х2 + 2• х • 3.
В полученном выражении первое слагаемое - квадрат числа х, а второе - удвоенное произведение х на 3. По этому чтобы получить полный квадрат, нужно прибавить 32, так как
х2 + 2• х • 3 + 32 = (х + 3)2.
Преобразуем теперь левую часть уравнения
х2 + 6х - 7 = 0,
прибавляя к ней и вычитая 32. Имеем:
х2 + 6х - 7 = х2 + 2• х • 3 + 32 - 32 - 7 = (х + 3)2 - 9 - 7 = (х + 3)2 - 16.
Таким образом, данное уравнение можно записать так:
(х + 3)2 - 16 =0, (х + 3)2 = 16.
Следовательно, х + 3 - 4 = 0, х1 = 1, или х + 3 = -4, х2 = -7.
3. СПОСОБ: Решение квадратных уравнений по формуле.
Умножим обе части уравнения
ах2 + bх + с = 0, а ≠ 0
на 4а и последовательно имеем:
4а2х2 + 4аbх + 4ас = 0,
((2ах)2 + 2ах • b + b2) - b2 + 4ac = 0,
(2ax + b)2 = b2 - 4ac,
2ax + b = ± √ b2 - 4ac,
2ax = - b ± √ b2 - 4ac,
• Примеры.
а) Решим уравнение: 4х2 + 7х + 3 = 0.
а = 4, b = 7, с = 3, D = b2 - 4ac = 72 - 4 • 4 • 3 = 49 - 48 = 1,
D > 0, два разных корня;
Таким образом, в случае положительного дискриминанта, т.е. при
b2 - 4ac >0 , уравнение ах2 + bх + с = 0 имеет два различных корня.
б) Решим уравнение: 4х2 - 4х + 1 = 0,
а = 4, b = - 4, с = 1, D = b2 - 4ac = (-4)2 - 4 • 4 • 1= 16 - 16 = 0,
D = 0, один корень;
Итак, если дискриминант равен нулю, т.е. b2 - 4ac = 0, то уравнение
ах2 + bх + с = 0 имеет единственный корень,
в) Решим уравнение: 2х2 + 3х + 4 = 0,
а = 2, b = 3, с = 4, D = b2 - 4ac = 32 - 4 • 2 • 4 = 9 - 32 = - 13 , D < 0.
Данное уравнение корней не имеет.
Итак, если дискриминант отрицателен, т.е. b2 - 4ac < 0, уравнение
ах2 + bх + с = 0 не имеет корней.
Формула (1) корней квадратного уравнения ах2 + bх + с = 0 позволяет найти корни любого квадратного уравнения (если они есть), в том числе приведенного и неполного. Словесно формула (1) выражается так: корни квадратного уравнения равны дроби, числитель которой равен второму коэффициенту, взятому с противоположным знаком, плюс минус корень квадратный из квадрата этого коэффициента без учетверенного произведения первого коэффициента на свободный член, а знаменатель есть удвоенный первый коэффициент.
4. СПОСОБ: Решение уравнений с использованием теоремы Виета.
Как известно, приведенное квадратное уравнение имеет вид
х2 + px + c = 0. (1)
Его корни удовлетворяют теореме Виета, которая при а =1 имеет вид
x1 x2 = q,
x1 + x2 = - p
Отсюда можно сделать следующие выводы (по коэффициентам p и q можно предсказать знаки корней).
а) Если сводный член q приведенного уравнения (1) положителен (q > 0), то уравнение имеет два одинаковых по знаку корня и это зависти от второго коэффициента p. Если р < 0, то оба корня отрицательны, если р < 0, то оба корня положительны.
Например,
x2 – 3x + 2 = 0; x1 = 2 и x2 = 1, так как q = 2 > 0 и p = - 3 < 0;
x2 + 8x + 7 = 0; x1 = - 7 и x2 = - 1, так как q = 7 > 0 и p= 8 > 0.
б) Если свободный член q приведенного уравнения (1) отрицателен (q < 0), то уравнение имеет два различных по знаку корня, причем больший по модулю корень будет положителен, если p < 0 , или отрицателен, если p > 0 .
Например,
x2 + 4x – 5 = 0; x1 = - 5 и x2 = 1, так как q= - 5 < 0 и p = 4 > 0;
x2 – 8x – 9 = 0; x1 = 9 и x2 = - 1, так как q = - 9 < 0 и p = - 8 < 0.
5. СПОСОБ: Решение уравнений способом «переброски».
Рассмотрим квадратное уравнение
ах2 + bх + с = 0, где а ≠ 0.
Умножая обе его части на а, получаем уравнение
а2х2 + аbх + ас = 0.
Пусть ах = у, откуда х = у/а; тогда приходим к уравнению
у2 + by + ас = 0,
равносильно данному. Его корни у1 и у2 найдем с помощью теоремы Виета.
Окончательно получаем х1 = у1/а и х1 = у2/а. При этом способе коэффициент а умножается на свободный член, как бы «перебрасывается» к нему, поэтому его называют способом «переброски». Этот способ применяют, когда можно легко найти корни уравнения, используя теорему Виета и, что самое важное, когда дискриминант есть точный квадрат.
• Пример.
Решим уравнение 2х2 – 11х + 15 = 0.
Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение
у2 – 11у + 30 = 0.
Согласно теореме Виета
у1 = 5 х1 = 5/2 x1 = 2,5
у2 = 6 x2 = 6/2 x2 = 3.
Ответ: 2,5; 3.
6. СПОСОБ: Свойства коэффициентов квадратного уравнения.
А. Пусть дано квадратное уравнение ах2 + bх + с = 0, где а ≠ 0.
1) Если, а+ b + с = 0 (т.е. сумма коэффициентов равна нулю), то х1 = 1,
х2 = с/а.
Доказательство. Разделим обе части уравнения на а ≠ 0, получим приведенное квадратное уравнение
x2 + b/a • x + c/a = 0.
Согласно теореме Виета
x1 + x2 = - b/a,
x1x2 = 1• c/a.
По условию а – b + с = 0, откуда b = а + с. Таким образом,
x1 + x2 = - а + b/a= -1 – c/a,
x1x2 = - 1• ( - c/a),
т.е. х1 = -1 и х2 = c/a, что м требовалось доказать.
• Примеры.
Решение. Так как а + b + с = 0 (345 – 137 – 208 = 0), то
х1 = 1, х2 = c/a = -208/345.
Ответ: 1; -208/345.
2)Решим уравнение 132х2 – 247х + 115 = 0.
Решение. Так как а + b + с = 0 (132 – 247 + 115 = 0), то
х1 = 1, х2 = c/a = 115/132.
Ответ: 1; 115/132.
Б. Если второй коэффициент b = 2k – четное число, то формулу корней
• Пример.
Решим уравнение 3х2 — 14х + 16 = 0.
Решение. Имеем: а = 3, b = — 14, с = 16, k = — 7;
D = k2 – ac = (- 7)2 – 3 • 16 = 49 – 48 = 1, D > 0, два различных корня;
Ответ: 2; 8/3
В. Приведенное уравнение
х2 + рх + q= 0
совпадает с уравнением общего вида, в котором а = 1, b = р и с = q. Поэтому для приведенного квадратного уравнения формула корней
принимает вид:
Формулу (3) особенно удобно использовать, когда р — четное число.
• Пример. Решим уравнение х2 – 14х – 15 = 0.
Решение. Имеем: х1,2 =7±
Ответ: х1 = 15; х2 = -1.
7. СПОСОБ: Графическое решение квадратного уравнения.
Если в уравнении
х2 + px + q = 0
перенести второй и третий члены в правую часть, то получим
х2 = - px - q.
Построим графики зависимости у = х2 и у = - px - q.
График первой зависимости - парабола, проходящая через начало координат. График второй зависимости -
прямая (рис.1). Возможны следующие случаи:
- прямая и парабола могут пересекаться в двух точках,
абсциссы точек пересечения являются корнями квад- ратного уравнения;
- прямая и парабола могут касаться ( только одна общая точка), т.е. уравнение имеет одно решение;
- прямая и парабола не имеют общих точек, т.е. квадратное уравнение не имеет корней.
• Примеры.
1) Решим графически уравнение х2 - 3х - 4 = 0 (рис. 2).
Решение. Запишем уравнение в виде х2 = 3х + 4.
Построим параболу у = х2 и прямую у = 3х + 4. Прямую
у = 3х + 4 можно построить по двум точкам М (0; 4) и
N (3; 13). Прямая и парабола пересекаются в двух точках
А и В с абсциссами х1 = - 1 и х2 = 4. Ответ: х1 = - 1;
х2 = 4.
2) Решим графически уравнение (рис. 3) х2 - 2х + 1 = 0.
Решение. Запишем уравнение в виде х2 = 2х - 1.
Построим параболу у = х2 и прямую у = 2х - 1.
Прямую у = 2х - 1 построим по двум точкам М (0; - 1)
и N(1/2; 0). Прямая и парабола пересекаются в точке А с
абсциссой х = 1. Ответ: х = 1.
3) Решим графически уравнение х2 - 2х + 5 = 0 (рис. 4).
Решение. Запишем уравнение в виде х2 = 5х - 5. Построим параболу у = х2 и прямую у = 2х - 5. Прямую у = 2х - 5 построим по двум точкам М(0; - 5) и N(2,5; 0). Прямая и парабола не имеют точек пересечения, т.е. данное уравнение корней не имеет.
Ответ. Уравнение х2 - 2х + 5 = 0 корней не имеет.
Заключение
Значение квадратных уравнений заключается не только в изяществе и краткости решения задач, хотя и это весьма существенно. Не менее важно и то, что в результате применения квадратных уравнений при решении задач не редко обнаруживаются новые детали, удается сделать интересные обобщения и внести уточнения, которые подсказываются анализом полученных формул и соотношений.
Хочется отметить и то, что излагаемая тема в этой работе еще мало изучена вообще, просто ею не занимаются, поэтому она таит в себе много скрытого и неизвестного, что дает прекрасную возможность для дальнейшей работы над ней.
Здесь я остановился на вопросе решения квадратных уравнений, а что,
если существуют и другие способы их решения?!
Подводя итоги, можно сделать вывод: квадратные уравнения играют огромную роль в развитии математики. Все мы умеем решать квадратные уравнения со школьной скамьи (8 класс), до окончания вуза. Эти знания могут пригодиться нам на протяжении всей жизни.
Так как эти методы решения квадратных уравнений просты в применении, то они, безусловно, должно заинтересовать увлекающихся математикой учеников. Моя работа дает возможность по-другому посмотреть на те задачи, которые ставит перед нами математика.
Литература:
1. Алимов Ш.А., Ильин В.А. и др. Алгебра, 6-8. Пробный учебник для 6-8 классовой средней школы. - М., Просвещение, 1981.
2. Брадис В.М. Четырехзначные математические таблицы для средней школы.
Изд. 57-е. - М., Просвещение, 1990. С. 83.
3. Кружепов А.К., Рубанов А.Т. Задачник по алгебре и элементарным функциям. Учебное пособие для средних специальных учебных заведений. - М., высшая школа, 1969.
4. Окунев А.К. Квадратичные функции, уравнения и неравенства. Пособие для учителя. - М., Просвещение, 1972.
5. Пресман А.А. Решение квадратного уравнения с помощью циркуля и линейки. - М., Квант, № 4/72. С. 34.
6. Соломник В.С., Милов П.И. Сборник вопросов и задач по математике. Изд. - 4-е, дополн. - М., Высшая школа, 1973.
7. Худобин А.И. Сборник задач по алгебре и элементарным функциям. Пособие для учителя. Изд. 2-е. - М., Просвещение, 1970.
Слайд 1
7 способов решения квадратных уравнений 1 2 3 4 5 6 7Слайд 2
История развития квадратных уравнений. Квадратные уравнения в Древнем Вавилоне: Х 2 +Х=3/4 Х 2 -Х=14,5
Слайд 3
Как составлял и решал Диофант квадратные уравнения . Отсюда уравнение: (10+х)(10-х) =96 или же: 100 - х 2 =96 х 2 - 4=0 (1) Решение х = -2 для Диофанта не существует, так как греческая математика знала только положительные числа.
Слайд 4
Квадратные уравнения в Индии. ах 2 + b х = с, а>0. (1)
Слайд 5
Квадратные уравнения у ал – Хорезми. 1) «Квадраты равны корнями», т.е. ах2 + с = b х. 2) «Квадраты равны числу», т.е. ах2 = с. 3) «Корни равны числу», т.е. ах = с. 4) «Квадраты и числа равны корням», т.е. ах2 + с = b х. 5) «Квадраты и корни равны числу», т.е. ах2 + bx = с. 6) «Корни и числа равны квадратам», т.е. bx + с = ах2.
Слайд 6
Квадратные уравнения в Европе ХIII - Х V II вв. х 2 + b х = с , при всевозможных комбинациях знаков коэффициентов b , с было сформулировано в Европе лишь в 1544 г. М. Штифелем.
Слайд 7
О теореме Виета. «Если В + D , умноженное на А - А 2 , равно В D , то А равно В и равно D ». На языке современной алгебры вышеприведенная формулировка Виета означает: если имеет место (а + b )х - х2 = ab, т.е. х 2 - (а + b )х + а b = 0, то х 1 = а, х 2 = b.
Слайд 8
Способы решения квадратных уравнений. 1. СПОСОБ : Разложение левой части уравнения на множители. Решим уравнение х2 + 10х - 24 = 0 . Разложим левую часть на множители: х 2 + 10х - 24 = х 2 + 12х - 2х - 24 = х(х + 12) - 2(х + 12) = (х + 12)(х - 2). Следовательно, уравнение можно переписать так: (х + 12)(х - 2) = 0 Так как произведение равно нулю, то, по крайней мере, один из его множителей равен нулю. Поэтому левая часть уравнения обращается нуль при х = 2 , а также при х = - 12 . Это означает, что число 2 и - 12 являются корнями уравнения х 2 + 10х - 24 = 0 .
Слайд 9
2. СПОСОБ : Метод выделения полного квадрата. Решим уравнение х 2 + 6х - 7 = 0 . Выделим в левой части полный квадрат. Для этого запишем выражение х 2 + 6х в следующем виде: х 2 + 6х = х 2 + 2• х • 3. полученном выражении первое слагаемое - квадрат числа х, а второе - удвоенное произведение х на 3. По этому чтобы получить полный квадрат, нужно прибавить 32, так как х 2 + 2• х • 3 + 32 = (х + 3) 2 . Преобразуем теперь левую часть уравнения х 2 + 6х - 7 = 0 , прибавляя к ней и вычитая 32. Имеем: х 2 + 6х - 7 = х 2 + 2• х • 3 + 32 - 32 - 7 = (х + 3)2 - 9 - 7 = (х + 3) 2 - 16 . Таким образом, данное уравнение можно записать так: (х + 3) 2 - 16 =0, (х + 3) 2 = 16. Следовательно, х + 3 - 4 = 0, х 1 = 1 , или х + 3 = -4, х 2 = -7.
Слайд 10
3. СПОСОБ : Решение квадратных уравнений по формуле. Умножим обе части уравнения ах 2 + b х + с = 0, а ≠ 0 на 4а и последовательно имеем: 4а 2 х 2 + 4а b х + 4ас = 0, ((2ах) 2 + 2ах • b + b 2 ) - b 2 + 4 ac = 0, (2ax + b) 2 = b 2 - 4ac, 2ax + b = ± √ b 2 - 4ac, 2ax = - b ± √ b 2 - 4ac,
Слайд 11
4. СПОСОБ: Решение уравнений с использованием теоремы Виета. Как известно, приведенное квадратное уравнение имеет вид х 2 + px + c = 0. (1) Его корни удовлетворяют теореме Виета, которая при а =1 имеет вид x 1 x 2 = q, x 1 + x 2 = - p а) x 2 – 3 x + 2 = 0; x 1 = 2 и x 2 = 1, так как q = 2 > 0 и p = - 3 < 0 ; x 2 + 8 x + 7 = 0; x 1 = - 7 и x 2 = - 1 , так как q = 7 > 0 и p = 8 > 0 . б) x 2 + 4 x – 5 = 0; x 1 = - 5 и x 2 = 1, так как q = - 5 < 0 и p = 4 > 0; x 2 – 8 x – 9 = 0; x 1 = 9 и x 2 = - 1 , так как q = - 9 < 0 и p = - 8 < 0.
Слайд 12
5. СПОСОБ: Решение уравнений способом «переброски». Рассмотрим квадратное уравнение ах 2 + b х + с = 0, где а ≠ 0. Умножая обе его части на а, получаем уравнение а 2 х 2 + а b х + ас = 0. Пусть ах = у , откуда х = у/а ; тогда приходим к уравнению у 2 + by + ас = 0 , равносильно данному. Его корни у 1 и у 2 найдем с помощью теоремы Виета. Окончательно получаем х 1 = у 1 /а и х 1 = у 2 /а .
Слайд 13
• Пример. Решим уравнение 2х 2 – 11х + 15 = 0. Решение. «Перебросим» коэффициент 2 к свободному члену, в результате получим уравнение у 2 – 11у + 30 = 0 . Согласно теореме Виета у 1 = 5 х 1 = 5/2 x 1 = 2,5 у 2 = 6 x 2 = 6/2 x 2 = 3. Ответ: 2,5 ; 3 .
Слайд 14
6. СПОСОБ: Свойства коэффициентов квадратного уравнения. А. Пусть дано квадратное уравнение ах 2 + b х + с = 0, где а ≠ 0 . 1) Если, а+ b + с = 0 (т.е. сумма коэффициентов равна нулю), то х 1 = 1, х 2 = с/а. Доказательство. Разделим обе части уравнения на а ≠ 0, получим приведенное квадратное уравнение x 2 + b/a • x + c/a = 0. Согласно теореме Виета x 1 + x 2 = - b / a , x 1 x 2 = 1• c / a . По условию а – b + с = 0, откуда b = а + с . Таким образом, x 1 + x 2 = - а + b/a= -1 – c/a, x 1 x 2 = - 1• ( - c/a), т.е. х 1 = -1 и х 2 = c / a , что и требовалось доказать.
Слайд 15
Б. Если второй коэффициент b = 2 k – четное число, то формулу корней В. Приведенное уравнение х 2 + рх + q = 0 совпадает с уравнением общего вида, в котором а = 1 , b = р и с = q . Поэтому для приведенного квадратного уравнения формула корней
Слайд 16
7. СПОСОБ: Графическое решение квадратного уравнения. Если в уравнении х 2 + px + q = 0 перенести второй и третий члены в правую часть, то получим х 2 = - px - q. Построим графики зависимости у = х 2 и у = - px - q .
Слайд 17
• Пример Решим графически уравнение х 2 - 3х - 4 = 0 (рис. 2). Решение. Запишем уравнение в виде х 2 = 3х + 4 . Построим параболу у = х 2 и прямую у = 3х + 4 . Прямую у = 3х + 4 можно построить по двум точкам М (0; 4) и N (3; 13) . Ответ : х 1 = - 1; х 2 = 4
Слайд 18
Вывод: квадратные уравнения играют огромную роль в развитии математики. Все мы умеем решать квадратные уравнения со школьной скамьи (8 класс), до окончания вуза. Эти знания могут пригодиться нам на протяжении всей жизни. Так как эти методы решения квадратных уравнений просты в применении, то они, безусловно, должно заинтересовать увлекающихся математикой учеников. Моя работа дает возможность по-другому посмотреть на те задачи, которые ставит перед нами математика.
Слайд 19
Литература: 1. Алимов Ш.А., Ильин В.А. и др. Алгебра, 6-8. 2. Брадис В.М. Четырехзначные математические таблицы для средней школы. 3. Кружепов А.К., Рубанов А.Т. Задачник по алгебре и элементарным функциям. 4. Окунев А.К. Квадратичные функции, уравнения и неравенства. 5. Пресман А.А. Решение квадратного уравнения с помощью циркуля и линейки. 6. Соломник В.С., Милов П.И. Сборник вопросов и задач по математике. 7. Худобин А.И. Сборник задач по алгебре и элементарным функциям.
Муниципальное общеобразовательное учреждение
основная общеобразовательная школа № 25 города Армавира
Проектно-исследовательская работа
«Теорема Пифагора»
Работу выполнила: Аскарян Раиса
ученица 8-а класса
Руководитель: Хлыбова Наталья Александровна
Армавир - 2009
Содержание
I | Вступительная часть | |
I. 1 | Обоснование выбора | 3 |
I. 2 | Цель работы | 3 |
I. 3 | Задачи работы | 3 |
I. 4 | Этапы работы | 4 |
I. 5 | Необходимые ресурсы | 4 |
II | Основная часть | 5 |
II.1 | Обзор литературы | 5 |
II.2 | Краткое описание работы | 10 |
III | Вывод | 10 |
IV | Используемая литература | 10 |
I. 1. Обоснование выбора
Идея этой работы возникла в рамках проекта "История развития геометрии треугольников", которым я начала заниматься с 7-го класса под руководством моего учителя математики Хлыбовой Натальи Александровны. Поэтому к 8-му классу, когда мы столкнулись с теоремой Пифагора, у меня был собран довольно обширный и интересный материал по истории развития прямоугольных треугольников и теореме Пифагора, в частности. Я решила, что этот материал будет интересен и моим одноклассникам. Помимо исторических сведений в проект вошли доказательство теоремы Пифагора из учебника "Геометрия. 7-9 классы" Л.С. Атанасяна, а также подготовленные мной тестовые задания.
I.2. Цель работы
Предполагаемый продукт: Учебная презентация.
I.3. Задачи работы
I.4. Этапы работы
№ п/п | Этапы | Сроки | Примечание |
Подготовка | 20-30.12.08 | ||
Сбор материала по теме проекта | 01.01.09 - 31.01.09 | ||
Анализ и обработка материала по теме проекта | 01.02.09 - 28.02.09 | ||
Оформление работы | 01.03.09 - 31.03.09 | ||
Создание презентации для защиты проекта в среде Microsoft Power Point | 01.03.09 - 31.03.09 | ||
Показ презентации учителям и учащимся | 11-20.04.09 | ||
Защита проекта на "Неделе математики" в школе | 27-28.04.09 |
I.5. Необходимые ресурсы:
II. Основная часть
II.1. Обзор литературы
Я ознакомилась с книгами по истории развития геометрии, из которых узнала основные этапы развития истории геометрии треугольников.
Несмотря на ее предельную простоту, теорема Пифагора, по мнению многих математиков, относится к разряду наиболее выдающихся математических теорем за всю историю математики. Гениальный астроном Иоганн Кеплер выразил свое восхищение теоремой Пифагора в следующих словах: "В геометрии существует два сокровища – теорема Пифагора и деление отрезка в крайнем и среднем отношении. Первое можно сравнить с ценностью золота, второе можно назвать драгоценным камнем". То есть, из всего необозримого множества геометрических результатов и теорем Кеплер выделил только два результата, которые он причислил к разряду "сокровищ геометрии": теорему Пифагора и "задачу о делении отрезка в крайнем и среднем отношении" (так в старину называлась знаменитая "задача о золотом сечении").
Одни из первых упоминаний теоремы Пифагора относится еще к древнему Китаю. Здесь особое внимание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5: "Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4". В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Бхаскары.
Кантор (крупнейший немецкий историк математики) считает, что равенство 32 + 42 = 52
было известно уже египтянам еще около 2300г. до н. э. во времена царя Аменемхета I (согласно папирусу 6619 Берлинского музея). По мнению Кантора гарпедонапты, или "натягиватели веревок", строили прямые углы при помощи прямоугольных треугольников со сторонами 3, 4 и 5.
"Священный" или "египетский" треугольник
Существует легенда, что именно соотношение 32+42=52 использовалось египетскими землемерами и строителями для определения прямого угла на плоскости. Для этого использовалась веревка длиной, например, 12 метров, которая специальными петлями или узлами была разделена на три части в 3, 4 и 5 метров. Для определения прямого угла египетский землемер натягивал одну из частей веревки, например, длиной 3 метра, и фиксировал ее на земле с помощью специальных "колышек", забиваемых в две петли. Затем веревка натягивалась с помощью третьей петли и эта петля фиксировалась с помощью "колышка".
Ясно, что угол, образуемый между двумя меньшими сторонами образованного таким образом треугольника, в точности равнялся 90°. Считалось, что при закладке пирамид такую ритуальную процедуру по определению прямых углов основания пирамиды на земле выполнял сам фараон. Гарпедонаптам можно было бы возразить, что их способ построения становиться излишним, если воспользоваться, например, деревянным угольником, применяемым всеми плотниками. И действительно, известны египетские рисунки, на которых встречается такой инструмент, например рисунки, изображающие столярную мастерскую.
Из истории древнего Египта практически не сохранилось каких-либо записанных сведений о геометрии треугольников, то есть не существует книг или текстов, в которых записаны геометрические знания, но остались архитектурные сооружения пирамид и храмов, а также остались изображения, в которых отображены знания о геометрии древнего Египта. Внимательное исследование изображений позволяет понимать геометрию, и в том числе позволяет понимать геометрические пропорции человеческого лица и тела с помощью, в том числе и "пифагоровых треугольников".
Скульптурное изображение фараона Хефрена
Несколько больше известно о теореме Пифагора у вавилонян. В одном тексте, относимом ко времени Хаммурапи, т. е. к 2000 г. до н. э., приводится приближенное вычисление гипотенузы прямоугольного треугольника. Отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере, в некоторых случаях.
Основываясь, с одной стороны, на сегодняшнем уровне знаний о египетской и вавилонской математике, а с другой - на критическом изучении греческих источников, голландский математик Ван-дер-Варден сделал следующий вывод: "Заслугой первых греческих математиков, таких как Фалес, Пифагор и пифагорейцев, является не открытие математики, но ее систематизация и обоснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку".
Геометрия у индусов была тесно связана с религиозными обрядами и культом жертвоприношения (построение алтарей-жертвенников). Весьма вероятно, что теорема о квадрате гипотенузы была известна в Индии уже около 18 века до н. э. В древнеиндийской "Сульва-Сутре" («Правило веревки") есть следующие положения:
1) квадрат диагонали прямоугольника равен сумме квадратов его меньшей и большей стороны;
2) квадрат на диагонали квадрата в два раза больше самого квадрата.
В настоящее время известно, что эта теорема не была открыта Пифагором. Однако одни полагают, что Пифагор первым дал ее полноценное доказательство, а другие отказывают ему и в этой заслуге. Некоторые приписывают Пифагору доказательство, которое Евклид приводит в первой книге своих "Начал". С другой стороны, Прокл утверждает, что доказательство в "Началах" принадлежит самому Евклиду. Как мы видим, история математики почти не сохранила достоверных данных о жизни Пифагора и его математической деятельности. Зато легенда сообщает даже ближайшие обстоятельства, сопровождавшие открытие теоремы. Рассказывают, что в честь этого открытия Пифагор принес в жертву 100 быков.
Доказательство теоремы Пифагора учащиеся средних веков считали очень трудным и называли его "Dons asinorum" - "ослиный мост", или "elefuga" - "бегство убогих", так как некоторые "убогие" ученики, не имевшие серьезной математической подготовки, бежали от геометрии. Слабые ученики, заучившие теоремы наизусть, без понимания, и прозванные поэтому "ослами", были не в состоянии преодолеть теорему Пифагора, служившую для них вроде непреодолимого моста. Из-за чертежей, сопровождающих теорему Пифагора, учащиеся называли ее также "ветряной мельницей", составляли стихи вроде "Пифагоровы штаны на все стороны равны", рисовали карикатуры.
Карикатуры на теорему Пифагора
Теорема Пифагора - одна из главных и, можно сказать, самая главная теорема геометрии. Значение ее состоит в том, что из нее или с ее помощью можно вывести большинство теорем геометрии. Теорема Пифагора замечательна и тем, что сама по себе она вовсе не очевидна. Например, свойства равнобедренного треугольника можно видеть непосредственно на чертеже. Но сколько ни смотри на прямоугольный треугольник, никак не увидишь, что между его сторонами есть простое соотношение: c2=a2+b2.
Сейчас известно более трехсот доказательств теоремы Пифагора. Самое наглядное из них выглядит следующим образом. Стоит только внимательно посмотреть на эти два квадрата, и все сразу становится ясно. Индусы к этому чертежу добавляли лишь одно слово: «Смотри!»
Индусы к этому чертежу добавляли лишь одно слово: «Смотри!»
II.2. Краткое описание работы
Моя работа состоит из пяти частей:
1) вступление (слайды № 1-5);
2) история появления и развития теоремы Пифагора (слайды №№ 6-12);
3) различные виды доказательств теоремы Пифагора от древних веков до современности (слайды №№ 13-16);
4) тестовые задания на уровень усвоения изученного материала (слайды №№ 19-30);
5) ссылка на используемые материалы (слайд № 31).
III. Вывод
Данная работа может быть использована учителем, преподающим геометрию в 8-11 классах, с целью расширения исторических знаний (слайды №1-12), подачи учебного материала (слайды 13-16) и проверки знаний учащихся (слайды 19-30) по данной теме.
IV. Используемая литература
1. Балк М.Б, Балк Г.Д. Математика после уроков: Пособие для учителей. - М.: Просвещение, 1971.
2. Л.С. Атанасян, В.Ф.Бутузов и др. Геометрия, 7-9кл.: Учебник для общеобразовательных учреждений - 19-е изд. – М.: Просвещение, 2009.
3. Г.И. Глейзер. История математики в школе. 7-8кл.: Пособие для учителей, - М.: Просвещение, 1982.
4. Гусев В. А. и др. Математ. словарь для школьников: Сдай экзамены на пять! - Ростов н/Д: Феникс, 2004
5. Ресурсы удаленного доступа [электронный ресурс; рисунки] - Режим доступа: http://festival.1september.ru
Петушок из русских сказок
Новогодняя задача на смекалку. Что подарил Дед Мороз?
Философские стихи Кристины Россетти
Агния Барто. Сережа учит уроки
Рисуем акварелью: "Романтика старого окна"