Исследовательская работа
Вложение | Размер |
---|---|
opisanie_raboty.docx | 38.13 КБ |
«Математика в архитектуре»,
Морозова Анастасия Сергеевна,
Муниципальное бюджетное образовательное учреждение «Средняя общеобразовательная школа №30 с углублённым изучением предметов образовательной области «Физическая культура»,
6-А класс
Введение
Математика-это не только стройная система законов, теорем и задач, но и уникальное средство познания красоты. Многие математические теории нередко кажутся искусственными, оторванными от реальной жизни, просто непонятными. Если же подойти к этим проблемам с позиции исторического развития, то станет, виден их глубокий
Гипотеза: архитектура и математика взаимосвязаны, в архитектуре золотое сечение является основополагающим принципом красоты, прочности, надежности.
Цель работы: формирование представления о прикладных возможностях математики, ее месте в общечеловеческой культуре, а также о практической значимости математических знаний.
Задачи:
Методы исследования: анкетирование, сбор информации, изучение литературы, анализ.
Практическая значимость: данный материал можно использовать для привития интереса к математике; способствует формированию представления о прикладных возможностях математики, её связи с архитектурой.
Я заинтересовалась, как связаны архитектура и математика, решая задачу из учебника математики. В ней предлагалось рассмотреть 2 башни Московского Кремля и ответить на вопросы:
1) Использованы ли архитекторами известные вам фигуры – призма, цилиндр, пирамида, конус?
2) Проверьте, нет ли элементов, размеры которых находятся в отношении золотого сечения.
Своё исследование я начала с анкетирования. В анкетирование приняло участие 40 человек, им были предложены вопросы:
Ответы ( Приложение1).
Понятие «архитектура» имеет несколько смыслов. Архитектура – древнейшая сфера человеческой деятельности («искусство строить» – по определению Альберти) и ее результат. Главный смысл понятия архитектура состоит в том, что это совокупность зданий и сооружений различного назначения, это пространство, созданное человеком и необходимое для его жизни и деятельности. Архитектура зарождается вместе с человечеством, сопровождает его в историческом развитии. В ней отражаются мировоззрение, ценности, знания людей, живших в различные исторические эпохи. В ней сосредоточены особенности культуры представителей разных национальностей. Архитектурные памятники, дошедшие до нас из глубины веков, помогают нам понять цели, взгляды, мысли, традиции и привычки, представления о красоте, уровень знаний людей, которые когда-то жили на Земле.
Для чего возводились архитектурные сооружения? Прежде всего они возводились для удобства жизни и деятельности человека. Они должны были служить его пользе: беречь его от холода и жары, дождей и палящего солнца. Они должны были создавать комфортные условия для различной деятельности человека – давать достаточное освещение, обеспечивать звукоизоляцию или хорошее распространение звука внутри помещения. Возводимые сооружения должны быть прочными, безопасными и долго служить людям. Но человеку свойственно еще и стремление к красоте, поэтому все, что он делает, он старается сделать красивым.
Архитектура — удивительная область человеческой деятельности. В ней тесно переплетены и строго уравновешены наука, техника и искусство. Только соразмерное, гармоническое единство этих начал делает возводимое человеком сооружение памятником архитектуры, неподвластным времени, подобно памятникам литературы, ваяния, музыки. Если же какой-то из элементов зодчества — наука, техника или искусство — начинает подавлять остальные, то истинная архитектура скатывается на одно из тупиковых направлений, именуемых функционализмом, техницизмом, эклектизмом или еще каким-нибудь «измом».
Пирамиды - фантастические фигуры из камня, устремленные к Солнцу. Своими громадными размерами, совершенством геометрической формы они поражают воображение. Недаром эти творения рук человеческих считали одним из чудес света.
Почему из всех геометрических тел именно пирамиду выбрали древнеегипетские зодчие, для того чтобы в веках прославить своих фараонов? Скорее всего причина кроется в том, что такая конструкция — одна из самых устойчивых. Ведь с увеличением высоты пирамиды масса ее верхней части уменьшается, а это — главный принцип надежности постройки. Они служили символами величия и могущества фараонов, свидетельством могущества страны.
Математика предлагает архитектору ряд, если так можно назвать, общих правил организации частей в целое, которые помогают:
Возникает естественный вопрос – откуда математика черпает эти общие правила. А получает она их из природы. Главная заслуга математики состоит в том, что она выявляет глубинные свойства, которые заложены в природе, но не лежат на поверхности.
Я решила разобраться, что является важнейшим математическим механизмом восприятия окружающего нас мира, а значит, что позволяет переносить образы природы в архитектурные сооружения, делая их прекрасными.
Архитектура триедина: она извечно сочетает в себе логику ученого, ремесло мастера и вдохновение художника. «Прочность, польза, красота» — такова знаменитая формула единого архитектурного целого, выведенная два тысячелетия тому назад древнеримским теоретиком зодчества Витрувием (I в. до н. э.). Вот почему архитектура как нельзя более отвечает теме: взаимодействие математики и искусства.
Главная ценность архитектурных сооружений в их красоте. Сооружение может быть прочным и удобным, но если оно не привлекает глаз, не вызывает у нас эстетического чувства, то оно воспринимается нами как обычное строение, но не как памятник архитектуры. Кроме того, архитектурное сооружение может стать непрочным и бесполезным, но при этом его архитектурная ценность не исчезнет. Так случилось, например, со многими шедеврами древнерусского зодчества. Они были сделаны из не самого прочного материала – дерева, в связи с этим со временем стали особенно интенсивно разрушаться. Во многом, благодаря этому, они перестали использоваться по своему назначению. Однако не перестали быть шедеврами архитектурного искусства. В качестве примера такого сооружения часто приводят Преображенский собор на острове Кижи. Другими словами, без искусства архитектуры нет. Но возникает естественный вопрос – а при чем здесь математика?
Это разнообразные геометрические формы, пропорции и законы симметрии, которые в определенной мере задают внутреннюю красоту архитектурной формы. Без нее внешние украшения зданий не улучшают, а порой усугубляют внешнее впечатление о том или ином сооружении.
Французский зодчий, живший в XVII веке, Франсуа Блондель писал: «Удовлетворение, которое мы испытываем, глядя на прекрасное произведение искусства, проистекает от того, что в нем соблюдены правила и мера, ибо удовольствия в нас вызывают единственно лишь пропорции. …Дабы подкрепить наше утверждение, я заявляю, что красота, возникающая из меры и пропорции, вовсе не требует дорогих материалов и изящной работы, дабы вызвать восхищение, напротив, она сверкает и делается все ощутимее, проступая сквозь грязь и хаос материала и его обработки». Лучшим подтверждением этих слов является скромная, не отличающаяся значительными размерами церковь Покрова Богородицы на Нерли.
Математика принимает непосредственное участие в обеспечении прочности и пользы архитектурных сооружений. Она же лежит в основе законов красоты, проявляющихся в архитектуре. Красота – внешнее выражение математических законов в архитектуре.
2.1. Исследование удобства планировки квартиры
Для чего люди строили различные здания? Ответ на этот вопрос ясен. Прежде всего, для того, чтобы в них было удобно жить и работать. Что мы вкладываем в понятие удобства? Вспомните дом или квартиру, в которых живете вы или ваши друзья. По каким характеристикам вы судите об их удобстве?
Как же математика может помочь в планировании помещений? Во-первых, при составлении плана чаще всего решается геометрическая задача о разбиении многоугольника на части. Во-вторых, архитектор обязательно пользуется понятием масштаб, т.к. все размеры реальных помещений он уменьшает в какое-либо одинаковое количество раз. Он изображает план с точки зрения математики, представляя его в виде той фигуры, которую можно было бы увидеть, смотря на неё сверху. Далее математика помогает архитектору сделать соответствующие расчёты по известным ему специальным формулам, чтобы решить какой толщины должны быть стены и сколько слоёв звукоизолирующего материала необходимо проложить, чтобы обеспечит жильцам комфортные условия жизни.
Удобство для жилых помещений определяется и их планировкой. Понятно, что столовая в доме должна быть недалеко от кухни. Сейчас иногда их объединяют в единое помещение. Туалет и ванная комната должны располагаться рядом, а иногда и просто совмещаться. Наконец, спальня должна находиться рядом с ванной комнатой и туалетом. Детская комната должна быть недалеко от спальни родителей. Вот гостиная, кабинет, библиотека могут располагаться где угодно.
Хорошая или плохая звукоизоляция может зависеть от двух основных условий: толщина стен или материал, из которого эти стены сделаны. Сегодня существует много различных звукоизоляционных материалов, которые обеспечивают снижение уровня шума в два и более раз. Математика помогает архитектору сделать соответствующие расчеты по известным ему специальным формулам и ответить на вопрос, какой толщины должны быть стены и сколько слоев звукоизолирующего материала необходимо проложить, чтобы обеспечить жильцам комфортные условия жизни.
Толщина стен важна не только для звукоизоляции, она обеспечивает и тепловой режим помещений. Ведь стены защищают людей от неблагоприятного воздействия окружающей среды. Ведь недаром люди говорят: «Мой дом – моя крепость». Это высказывание воспринимается в переносном смысле – как защита, крепость, прежде всего психологическая. Но изначальный смысл, возможно, исходил из того, что дом это защита от дождя, ветра, холода. Для нас, живущих в Сибири это особенно важно. И в этом случае для обеспечения хорошей теплоизоляции нужны специальные материалы и расчеты, позволяющие обеспечить защиту от холода и при этом минимизировать затраты на материалы, а значит снизить общую стоимость здания.
Теперь же поговорим о планировки жилых зданий, которая является их характеристикой. Рассмотрим это условие на примере той квартиры, где я живу. А для этого нам понадобится чертёж, который я вам предоставлю: (Приложение 2).
Итак, на примере этого плана, мы видим, что планировка моей квартиры достаточно правильная. Туалет, ванная и спальня находятся рядом. Коридор играет важную функциональную роль. Он является тем пространством, объединяющим все входы и выходы комнат в квартире, т.е. ни одно помещение не наблюдается у нас проходным, что очень удобно в проживании.
В общем виде, мы видим, что квартира имеет 2 комнаты, каждая из которых имеет свой правильный размер и местонахождение. Ведь понятно, что спальня или детская должны быть меньше по размеру, чем зал. Так оно у нас и есть.
Теперь поговорим об освещённости. В каждой комнате у нас располагается по одному окну, но достаточно широкому и высокому, что делает помещения светлыми и видимо свободными. Но нельзя ещё забывать архитектору при расположении комнат, что у квартиры есть теневая и солнечная сторона, что тоже немало важно.
Также удобство наших квартир характеризуется звукоизоляцией. На примере нашего плана можно сказать, что тут соблюдена средняя звукоизоляция, т.к. толщина стен не превышает среднего, которые сложены из кирпича, а значит не слишком обеспечивающие снижение уровня шума с улицы и со стороны соседей. Толщина стен важна не только для звукоизоляции, она ещё обеспечивает тепловой режим помещений, а это очень важно. Ведь стены защищают людей от неблагоприятного воздействия окружающей среды. Поэтому архитектору в построении чертежа нужно учитывать все, чтобы человеку ничто не доставляло неудобство в планировке его квартиры.
3.Геометрические формы в различных архитектурных стилях
Давайте проследим, какие стили существовали в различные эпохи и как они менялись. (Приложение 3)
Не в каждом стиле было описано присутствие геометрических фигур в сооружениях, но тем не менее на нескольких примерах становится совершенно ясно, что без них было бы невозможным что-либо построить. Мы знаем очень много плоских и пространственных фигур, которые иногда называют геометрическими телами. Ни один вообще вид искусств так тесно не связан с математикой, как архитектура.
Из многих отношений, которыми издавна пользовался человек при создании гармонических произведений, существует одно, единственное и неповторимое, обладающее уникальными свойствами. Оно отвечает такому делению целого на две части, при котором отношение большей части к меньшей равно отношению целого к большей части. Эту пропорцию называли по-разному – «золотой», «божественной». Древнейшие сведения о ней относятся ко времени расцвета античной культуры.
Приближенно это отношение равно 5/3, точнее 8/5, 13/8 и т. д. Принципы золотого сечения используются в архитектуре и в изобразительных искусствах. Термин «золотое сечение» ввел Леонардо да Винчи.
Теперь для полной убедительности и понимания ценности и значения отношения золотого сечения, рассмотрим пропорциональность пирамид Хеопса и Хефрена, где наиболее явно используется этот принцип, т.е. принцип золотого сечения. Нет сомнений в том, что, предпринимая строительство таких гигантов, зодчие очень и очень внимательно рассчитывали все их размеры. Иначе невозможно мыслить организацию этого чрезвычайного по масштабам строительства. Точные соразмерности этих сооружений не вызывают ни малейших сомнений.
Пирамида Хеопса имеет стороны основания: 230,41, 230,51, 230,60 и 230,54м. Высота равна 146,70м. Отношение наклонной образующей, или гипотенузы прямоугольного треугольника, образующего поперечный разрез пирамиды к малому катету, или половине стороны квадратного основания, равно отношению золотого сечения.
Пирамида Хефрена построена на основе отношений сторон священного египетского треугольника. Ее поперечный разрез определяется двумя треугольниками, сблокированными своими большими катетами. Проверим. Сторона основания равна 215,86м, высота равна 143,65м. Архитектурные формы пирамиды Хефрена как нельзя лучше свидетельствуют об использовании, зодчими Египта целочисленного треугольника 3, 4, 5. Анализ пропорций пирамид не оставляет и тени сомнения в том, что зодчие древнего Египта превосходно знали и высоко ценили отношение золотого сечения.
Примеры «золотого сечения» в архитектуре (Приложение 4).
B настоящее время, в архитектуре, делаются попытки все шире и шире использовать математические методы, но до сих пор, оценка качества произведений искусства, удобными для измерения количественными категориями, оказывается для современной науки непосильной.
Проведенное мною исследование показывает, что поиск «правила и меры» в архитектурных сооружениях, как правило, приводят к Золотому сечению. Приобретенные мною знания о золотой пропорции, еще больше убедили меня в том, что архитектура это то, где золотое сечение является основополагающим принципом красоты, прочности, надежности. К сожалению, Нижневартовск – молодой город, в нём нет исторических зданий, которые имели бы свое индивидуальное лицо. Но при этом следует отметить, что в настоящее время активно развивается строительство в нашем городе. Здания, которые возводятся сегодня – придерживаются золотых пропорций, что делает их красивее и привлекательнее.
Чаще всего в архитектуре нашего города при строительстве зданий используют геометрические фигуры: призмы,параллелепипеды, цилиндры.( Приложение5).
Выводы
Итак, при постройке, как современных зданий, так и зданий прошлых веков необходимы знания математики. Архитектурное формообразование с помощью геометрических построений сохраняется во всех случаях. Эта проблема стояла перед архитекторами прошлых веков, не исчезла она и сегодня.
В XXI веке геометрия и архитектура превратила наши города в величественные мегаполисы. В современном мире все здания и сооружения имеют различные геометрические формы. Большинство из них это многогранники.
Математика для творческого труда архитектора издавна признается чем-то очень важным, необходимым и плодотворным. За длительный период человеческой цивилизации создано немало произведений исключительной красоты. Эти произведения могут явиться примером использования зодчим в своем творческом труде математических закономерностей. Памятники архитектуры, получившие широкую известность как образцы пропорциональности и гармонии, буквально пронизаны математикой, целочисленными расчетами и геометрией.
На языке архитектуры, можно сказать, что математика – это грандиозное мысленное сооружение. Все сказанное убеждает нас в том, что архитектура и математика, являясь соответствующими проявлениями человеческой культуры, на протяжении веков активно влияли друг на друга. Они давали друг другу новые идеи и стимулы, совместно ставили и решали задачи. По сути, каждую из этих дисциплин можно рассматривать существенным и необходимым дополнением другой.
Итак, подведём итог. Мы пронаблюдали, как математика помогает добиться прочности, удобства, красоты архитектурных сооружений, как значимо и ценно отношение золотого сечения.
Литература
Астрономический календарь. Январь, 2019 год
Девочка-Снегурочка
Философские стихи Кристины Россетти
Повезло! Стихи о счастливой семье
Спасибо тебе, дедушка!