Диоксины и диоксиноподобные соединения
Диоксины и диоксиноподобные соединения
Скачать:
Вложение | Размер |
---|---|
dioksiny_i_dioksinopodobnye_soedineniya.docx | 55.39 КБ |
Предварительный просмотр:
ФГБОУ ВО «Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского»
«Диоксины и диоксиноподобные соединения»
Учитель химии и биологии
Дрей Наталия Дмитриевна
Введение
История челoвечества знает множествo случаев пoявления в жизни бoльших кoличеств пoтенциально oпасных вeществ. Воздействие этих чужеродных соединений (ксенобиотиков) на живые организмы иногда было причиной трагических последствий. Еще большую известность приобрел диоксин.
Человек впервые столкнулся с диоксинами во второй половине 20 века, и у него нет от них никакой защиты. Диоксин - один из самых коварных ядов, известных человечеству.
Диоксин опасен по двум причинам. Во-первых, являясь наиболее сильным синтетическим ядом, он отличается высокой стабильностью, долго сохраняется в окружающей среде, эффективно переносится по цепям питания и, таким образом, длительное время воздействует на живые организмы. Во-вторых, даже в относительно безвредных для организма количествах диоксин сильно повышает активность узкоспецифичных монооксигеназ печени, которые превращают многие вещества синтетического и природного происхождения в опасные для организма яды.
Диоксином в органической химии называют шестичленный гетероцикл, в котором два атома кислорода связаны двумя двойными углерод-углеродными связями. В токсикологии под термином “диоксин” понимают производное этого соединения, а именно 2,3,7,8-тетрахлордибензо-пара-диоксин (2,3,7,8 ТХДД), который является представителем обширной группы чрезвычайно опасных ксенобиотиков из числа полихлорированных полициклических соединений. Ниже приведены самые опасные из этих соединений.
Открытие диоксина
Причины поражения рабочих, занятых в производстве и переработке 2,4,5-трихлорфенола, были установлены в 1957 г. почти одновременно тремя группами ученых. Г. Гофман (ФРГ) выделил в чистом виде хлоракногенный фактор технического трихлорфенола, изучил его свойства, физиологическую активность и приписал ему строение тетрахлордибензофурана. Синтезированный образец этого соединения действительно оказывал на животных такое же действие, как и технический трихлорфенол.
В это же время К. Шульц (ФРГ), специалист в области кожных заболеваний, обратил внимание на то, что симптоматика поражения его клиента, работающего с хлорированными дибензо-пара-диоксинами, идентична симптоматике поражения техническим трихлорфенолом. Проведенные им исследования показали, что хлоракногенным фактором технического трихлорфенола действительно является 2,3,7,8-тетрахлордибензо-пара-диоксин (диоксин) - неизбежный побочный продукт щелочной переработки симметричного тетрахлорбензола. Позже сведения К. Шульца получили подтверждение в работах других ученых.
Высокая токсичность диоксина была установлена в 1957 г. и в США. Это произошло после несчастного случая с американским химиком Дж. Дитрихом, который, занимаясь синтезом диоксина и его аналогов, получил сильное поражение, напоминающее поражение техническим трихлорфенолом, и был госпитализирован на длительный срок. Этот факт, как и многие другие инциденты на производствах трихлорфенола в США, был скрыт от общественности, а синтезированные американским химиком галогенированные дибензо-n-диоксины изъяты для изучения военным ведомством.
Таким образом, в конце 50-х годов была выявлена причина частых поражений техническим трихлорфенолом и установлен факт токсичности диоксина и тетрахлордибензофурана. Более того, в 1961 г. К. Шульц опубликовал подробные сведения о чрезвычайно высоком токсичности диоксина для животных и показал особую опасность хронического поражения этим ядом. Так, через 25 лет после появления в природе диоксин перестал быть неизвестным “хлоракногенным фактором”.
К этому времени, несмотря на высокую токсичность, 2,4,5-трихлорфенол проник во многие сферы производства. Его натриевая и цинковая соли, а также продукт переработки – гексахлорофен - стали широко применяться в качестве биоцидных препаратов в технике, сельском хозяйстве, текстильной и бумажной промышленности, в медицине, пищевой промышленности и т. д. На основе этого фенола приготавливались инсектициды, препараты для нужд ветеринарии, технические жидкости различного назначения. Однако наиболее широкое применение 2,4,5-трихлорфенол нашел в производстве 2,4,5-Т и других гербицидов, предназначенных не только для мирных, но и для военных целей. В результате к 1960 г. производство трихлорфенола достигло внушительного уровня - многих тысяч тонн в год.
Одновременно с диоксином в качестве хлоракнегенного фактора постулировался и 2,3,7,8-тетрахлордибензофуран (2,3,7,8-ТХДФ). Однако особое внимание к себе этот ксенобиотик привлек как микропримесь к полихлорбифенилам (ПХБ), широко используемым в качестве жидких диэлектриков, теплоносителей, гидравлических жидкостей и т.д. Обусловленные ксенобиотиоком массовые поражения людей (в 1968 г. в Японии и в 1979 г. на Тайване) были связаны с попаданием ПХБ в рисовое масло, что привело к так называемой болезни Юшо-Ю Ченг (острое поражение печени, сопровождающееся многочисленными побочными эффектами).
Было показано также, что 2,3,7,8-ТХДД и 2,3,7,8-ТХДФ, равно как и многие другие представители полихлорированных дибензо-n-диоксинов (ПХДД) и полихлорированных дибензофуранов (ПХДФ), имеют сходные токсикологические характеристики, если атомы хлора занимают четыре латеральных 2,3,7,8-положения. Всего же гомологов и изомеров, составляющих ряды ПХДД ПХДФ, в принципе должно быть соответственно 75 и 135.
Наличие микропримесей диоксинов ПХДД и ПХДФ с фрагментами 2,3,7,8-Cl4 в продукции хлорных производств явилось причиной многочисленных поражений людей в различных странах мира в 60-70-е и даже 80-е годы. Их попадание в корм неоднократно наносило ущерб бройлерной промышленности США. Поражение людей и длительное заражение диоксинами различных объектов наблюдалось многократно и в непромышленной сфере, например, при непродуманной утилизации отходов хлорных производств, при пожарах на электросиловых точках, где сосредоточено большое количество полихлорвиниловых изоляционных материалов или имеются трансформаторы (конденсаторы), заполненные ПХБ, в том числе в смеси с хлорбензолами.
Во второй половине 70-х годов стало ясно, что опасность диоксинов как веществ, относящихся к разряду суперэкотоксикантов, приобрела общепланетарные масштабы. Как следствие в эти годы в химической экологии возник совершенно иной - хемосферный - подход к проблеме. Он рассматривает живые организмы главным образом в аспекте их взаимодействия со всей совокупностью непрерывно влияющих на них химических веществ. В рамках этого подхода оформилась и специальная дисциплина - экотоксикология.
Воздействие на организм
И в незначительных дозах диоксины и диоксиноподобные вещества оказывают сильное действие на организм, так как обладают кумулятивным эффектом (период полувыведения около 5 лет). Каждая последующая доза диоксина оказывает более токсическое действие, чем предыдущая. Основным источником диоксинов при хроническом отравлении является пища: рыба, молоко, животные жиры и другие продукты. Диоксин всасывается в кишечнике на 90%. Накапливается он преимущественно в жировой ткани, коже и печени. Концентрация диоксина в жировой ткани в 300 раз выше, чем в крови.
Диоксины:
1. Подавляют иммунитет, что приводит к увеличению частоты и тяжести инфекционных заболеваний.
2. Являются мощными канцерогенами и мутагенами.
3. Разрушают механизм адаптации аэробных организмов к стрессам и к многочисленным химическим веществам.
4. В популяции увеличивается частота генетических заболеваний, растет младенческая смертность. Диоксины образуются, как побочные продукты высокотемпературных химических реакций с участием хлора и попадают в окружающую среду с продукцией или отходами многих технологий. Для образования диоксинов необходимо сочетание трех условий: органические соединения, хлор и высокая температура.
5. Диоксины представляют собой группу химически связанных соединений, которые являются устойчивыми загрязнителями окружающей среды.
6. Диоксины присутствуют в окружающей среде повсюду в мире и накапливаются в пищевой цепи, в основном, в жировых тканях животных.
7. Более 90% воздействия диоксинов на людей происходит через пищевые продукты, главным образом через мясо и молочные продукты, рыбу и моллюски. Во многих странах действуют программы по осуществлению мониторинга за продовольственным снабжением.
8. Диоксины высоко токсичны и могут вызывать проблемы в области репродуктивного здоровья и развития, поражения иммунной системы, гормональные нарушения и раковые заболевания.
9. В связи с тем, что диоксины присутствуют повсюду, все люди подвергаются фоновому воздействию, которое, как считается, не оказывает воздействия на здоровье людей. Тем не менее, из-за высоко токсичного потенциала необходимо предпринимать усилия по снижению нынешнего уровня фонового воздействия.
10. Предотвращение или снижение уровня воздействия на людей наилучшим образом достигается путем проведения мероприятий, ориентированных на источники, то есть путем осуществления строгого контроля за промышленными процессами для максимально возможного уменьшения образования диоксинов.
Последствия воздействия диоксинов на здоровье человека
Причина токсичности диоксинов заключается в способности этих веществ точно вписываться в рецепторы живых организмов и подавлять или изменять их жизненные функции.
Диоксины, подавляя иммунитет и интенсивно воздействуя на процессы деления и специализации клеток, провоцируют развитие онкологических заболеваний. Вторгаются диоксины и в сложную отлаженную работу эндокринных желез. Вмешиваются в репродуктивную функцию, резко замедляя половое созревание и нередко приводя к женскому и мужскому бесплодию. Они вызывают глубокие нарушения практически во всех обменных процессах, подавляют и ломают работу иммунной системы, приводя к состоянию так называемого «химического СПИДа».
Недавние исследования подтвердили, что диоксины вызывают уродства и проблемное развитие у детей.
В организм человека диоксины проникают несколькими путями: 90 процентов — с водой и пищей через желудочно-кишечный тракт, остальные 10 процентов — с воздухом и пылью через лёгкие и кожу. Эти вещества циркулируют в крови, откладываясь в жировой ткани и липидах всех без исключения клеток организма. Через плаценту и с грудным молоком они передаются плоду и ребенку.
В связи с повсеместным распространением диоксинов все люди подвергаются его воздействию и имеют определенный уровень диоксинов в организме, который приводит к так называемой нагрузке на организм. Нынешнее обычное фоновое воздействие, в среднем, не имеет последствий для здоровья человека. Однако из-за высокого токсического потенциала этого класса соединений необходимо принимать меры для снижения уровня фонового воздействия.
Образование диоксинов
Диоксины образуются в качестве побочного продукта при производстве гербицидов хлорфенольного ряда (прежде всего, производных 2,4-дихлорфеноксиуксусной и 2,4,5-трихлорфеноксиуксусной кислот, а также их эфиров).
Так, например, производство 2,4,5-трихлорфеноксиуксусной кислоты включает последовательные стадии гидролиза тетрахлорбензола в метанольном растворе щёлочью с получением 2, 4, 5-трихлорфенолята натрия и последующее алкилирование 2,4,5-трихлорфенолята натрия хлоруксусной кислотой; 2,3,7,8-тетрахлордибензо-пара-диоксин образуется на обеих стадиях при самоконденсации 2,4,5-трихлорфенолята натрия:
Диоксины также образуются как нежелательные примеси в результате различных химических реакций при высоких температурах и в присутствии хлора. Основные причины эмиссии диоксинов в биосферу, прежде всего, использование высокотемпературных технологий хлорирования и переработки хлорорганических веществ и, особенно, сжигание отходов производства. Наличие в уничтожаемом мусоре повсеместно распространённого поливинилхлорида и других полимеров, различных соединений хлора способствует образованию в дымовых газах диоксинов. Другой источник опасности — целлюлозно-бумажная промышленность. Отбеливание целлюлозной пульпы хлором сопровождается образованием диоксинов и ряда других опасных хлорорганических веществ.
Нормативы содержания диоксинов в объектах окружающей среды в различных странах
Среда | Ед.изм. | США | Германия | Италия | Россия |
Атмосферный воздух населенных мест | пг/м³ | 0.02 | - | 0.04 | 0.5 |
Воздух рабочих помещений | пг/м³ | 0.13 | - | 0.12 | - |
Вода | пг/л | 0.013 | 0.01 | 0.05 | 20 |
Почва сельскохозяйственных угодий | нг/кг | 27 | 5 | 10 | - |
Почва, не используемая в сельском хозяйстве | нг/кг | 1000 | - | 50 | - |
Пищевые продукты | нг/кг | 0.001 | - | - | - |
Молоко (пересчет на жир) | нг/кг | - | 1.4 | - | 5.2 |
Рыба (пересчет на жир) | нг/кг | - | - | - | 88 |
Острая токсичность
Доза, раздражающая кожу — 0,3 микрограмма на килограмм веса.
LD50 — 70 мкг/кг для обезьян.
Токсичность диоксинов и некоторых ядов
Вещество | Животное | Минимальная летальная доза, моль/кг |
Ботулинический токсин | мышь | 3,3·10-17 |
Дифтерийный токсин | мышь | 4,2·10-12 |
Диоксин | морская свинка | 3,1·10-9 |
Кураре | мышь | 7,2·10-7 |
Стрихнин | мышь | 1,5·10-6 |
Диизопропилфторфосфат | мышь | 1,6·10-5 |
Цианид натрия | мышь | 3,1·10-4 |
Профилактика и контроль воздействия диоксинов
Надлежащее сжигание загрязненных материалов является наилучшим доступным методом профилактики и контроля воздействия диоксинов и его соединений. С помощью этого метода можно также уничтожать отработанные масла на основе ПХБ. В процессе сжигания требуются высокие температуры – свыше 850°С. Для уничтожения больших количеств загрязненных материалов необходимы еще более высокие температуры – 1000° и выше.
Наилучшим путем предотвращения или снижения уровня воздействия диоксинов на людей является принятие мер, ориентированных на источник, например, строгий контроль промышленных процессов для максимально возможного снижения уровня выделяемых диоксинов. Это является обязанностью национальных правительств. Комиссия "Кодекс Алиментариус" приняла в 2001 году Кодекс практики по мерам, ориентированным на источник, для уменьшения загрязнения пищевых продуктов химикатами (CAC/RCP 49-2001) и в 2006 году был принят Кодекс практики для предотвращения и снижения уровня загрязнения пищевых продуктов и кормов диоксинами и диоксиноподобными ПХБ (CAC/RCP 62-2006).
Более 90% случаев воздействия диоксинов на людей происходит через пищевые продукты, главным образом, через мясные и молочные продукты, рыбу и моллюсков. Следовательно, решающее значение имеет защита пищевых продуктов. Один из подходов, как уже указывалось выше, включает принятие ориентированных на источник мер для уменьшения выбросов диоксина. Необходимо не допускать вторичного загрязнения пищевых продуктов в пищевой цепи. Решающее значение для производства безопасных пищевых продуктов имеют надлежащие средства управления и практика во время первичного производства, обработки, распределения и продажи.
Как отмечается в приведенных выше примерах, первопричиной загрязнения пищевых продуктов часто является загрязненный корм для животных.
Необходимы системы мониторинга за загрязнением пищевых продуктов, не допускающие превышение приемлемых уровней. Национальные правительства должны контролировать безопасность пищевых продуктов и принимать меры для охраны здоровья населения. В случае подозрения на загрязнение страны должны иметь планы действий в чрезвычайных обстоятельствах для выявления, задержания и утилизации загрязненных кормов и пищевых продуктов. Население, подвергшееся воздействию, необходимо обследовать с точки зрения уровня воздействия (например, измерить уровень загрязнителей в крови или материнском молоке) и его последствий (например, установить клиническое наблюдение для выявления признаков плохого состояния здоровья).
Что должны делать потребители для снижения риска воздействия?
Удаление жира с мяса и потребление молочных продуктов с пониженным содержанием жира может уменьшить воздействие диоксиновых соединений. Сбалансированное питание (включающее фрукты, овощи и злаки в надлежащих количествах) также позволяет избежать чрезмерного воздействия диоксина из какого-либо одного источника. Эта долговременная стратегия направлена на уменьшение нагрузки на организм и имеет особую значимость для девушек и молодых женщин, так как способствует уменьшению воздействия на развивающийся плод, а затем на находящегося на грудном вскармливании ребенка.
Что необходимо для выявления и измерения уровня диоксинов в окружающей среде и пищевых продуктах?
Для проведения количественного химического анализа диоксинов необходимы современные методы, доступные только в ограниченном числе лабораторий в мире. Стоимость таких анализов очень высока и зависит от типа образца – от более 1000 долларов США за анализ одной биологической пробы до нескольких тысяч долларов США за проведение всесторонней оценки выбросов из мусоросжигательной установки.
Разрабатывается все большее число методов биологического скрининга (на основе клеток или антител). Использование таких методов для исследований образцов пищевых продуктов пока еще не в достаточной степени легализировано. Такие методы скрининга позволят проводить большее число анализов по более низкой стоимости. В случае позитивного скрининг-теста для подтверждения результатов необходимо проводить более сложные химические анализы.
Заключение
Диоксины и диоксиноподобные соединения высоко токсичные вещества относительно простого строения, образующихся во многих химических процессах. Их история насчитывает менее века, но за это время проделала огромный путь. В ней был период полного незнания и игнорирования проблемы, когда, например, врачи объясняли признаки тяжелой формы хлоракне у одного из рабочих, работавшего на установке по перегонке бифенила, простым нежеланием работать; были многочисленные аварии и борьба с вводимыми экологическими нормами; было засекречивание информации и использование в военных целях. В настоящее время человечество осознало нависшую угрозу, но, к сожалению, на этом история диоксина не кончается. Человечество не может отказаться от химической промышленности или от автомобилей, но его долг предельно уменьшить негативное влияние на окружающего среду. История диоксинов еще не закончена.
Список использованной литературы
- Федоров Л.А. «Диоксины как экологическая опасность: ретроспектива и перспектива.» М.: Наука, 1993
- Высочин В.И. «Диоксины и родственные соединения.» Новосибирск, 1989
- Коммонер Б. «Политическая история диоксинов», 1996
- Ю.Н. Яценко, Ю.И. Коваль, Т.И. Боковой «Химия и жизнь»
- В. С. Колодязная «Пищевая химия»
- Шелепчиков А.А. «История диоксинов»