Использование табличных процессоров при выполнении математических расчетов, математическом моделировании и обработке данных.

Ломакин Иван Александрович

Применение современных информационных технологий имеет огромное  значение для повышения эффективности обучения и воспитания.

В  условиях модернизации школы и образования решение поставленных задач обеспечивает применение автоматизированных систем обработки информации с максимальным использованием пакетов прикладных программ.

Сегодня мы являемся свидетелями уникального технологического явления — практически ежегодного появления компьютеров и прикладных программных продуктов с новыми техническими характеристиками.

Следует отметить два важных свойства современных прикладных программных систем:

во-первых, они позволяют разрабатывать автоматизированные системы обработки информации специалистам, не владеющим профессионально языками программирования;

во-вторых, модификации прикладных программных систем, как правило, обладают преемственностью с предыдущими версиями.

Скачать:

ВложениеРазмер
Microsoft Office document icon statya.doc613 КБ

Предварительный просмотр:

Статья на тему

Использование табличных процессоров при выполнении математических расчетов, математическом моделировании и

обработке данных.

Выполнил:

студент 2 курса  

Курского государственного университета

Ломакин Иван Александрович

СОДЕРЖАНИЕ:

ВВЕДЕНИЕ

1.ПОНЯТИЕ ЭЛЕКТРОННЫХ ТАБЛИЦ И ТАБЛИЧНЫХ    ПРОЦЕССОРОВ

1.1. Понятие электронной таблицы.

1.2. Функции табличных процессоров.

1.3.Структура электронной таблицы.

2. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ИНФОРМАЦИОННОГО МОДЕЛИ-РОВАНИЯ

2.1. Понятие модели.

2.2. Метод моделирования.

2.3. Классификация моделей.

2.4. Математические модели.

2.5. Основные этапы моделирования.

3. СОЗДАНИЕ ПРОСТЫХ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ   С ПОМОЩЬЮ ЭЛЕКТРОННЫХ ТАБЛИЦ

3.1.Преимущества электронных таблиц при моделировании.

3.2. Виды программ для работы с электронными таблицами.

3.3. Примеры  исследований математических моделей в электронных таблицах.

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Применение современных информационных технологий имеет огромное  значение для повышения эффективности обучения и воспитания.

В  условиях модернизации школы и образования решение поставленных задач обеспечивает применение автоматизированных систем обработки информации с максимальным использованием пакетов прикладных программ.

Сегодня мы являемся свидетелями уникального технологического явления — практически ежегодного появления компьютеров и прикладных программных продуктов с новыми техническими характеристиками.

Следует отметить два важных свойства современных прикладных программных систем:

во-первых, они позволяют разрабатывать автоматизированные системы обработки информации специалистам, не владеющим профессионально языками программирования;

во-вторых, модификации прикладных программных систем, как правило, обладают преемственностью с предыдущими версиями.

Как показала практика, наибольшее применение получили такие программные системы, как текстовые редакторы, системы управления базами данных (СУБД), электронные процессоры (электронные таблицы), графические редакторы (в том числе системы автоматизированного проектирования CAD/CAM) и коммуникационные программы.

Актуальность представленной темы состоит в том, что электронные таблицы являются основой при автоматизации любых расчетов: от простых арифметических операций до создания сложных математических систем интеллектуального анализа данных, которые находят применение в системах управления качеством продукции промышленных предприятий и используются крупными торговыми фирмами.

Предмет исследования – основные характеристики и возможности табличных процессоров при выполнении математических расчетов, математическом моделировании и обработке данных.

Для достижения поставленной цели необходимо решить следующие задачи:

• определить назначение и области применения табличных процессоров;

• рассмотреть особенности функционирования конкретных табличных процессоров: OpenOffice.org Calc, Microsoft Excel 2007, Zoho Sheet, EditGrid;

• провести сравнительный анализ, посредством которого выявить достоинства и недостатки рассмотренных табличных процессоров.

  1. ПОНЯТИЕ ЭЛЕКТРОННЫХ ТАБЛИЦ И

ТАБЛИЧНЫХ ПРОЦЕССОРОВ

1.1 Понятие электронной таблицы

В повседневной жизни мы постоянно использует таблицы: электронный дневник в школе, расписание самолетов и поездов, расписание занятий и т.д. Персональный компьютер расширяет возможности использования таблиц, позволяет не только представлять данные в электронном виде, но и обрабатывать их. Класс программного обеспечения, используемый для этой цели, называется табличными процессорами или электронными таблицами.

 Основное назначение табличных процессоров – это обработка таблично организованной информации, проведение расчётов на её основе и обеспечение визуального представления хранимых данных и результатов их обработки в виде графиков, диаграмм.

Табличный процессор или электронная таблица – это интерактивная система обработки данных, в основе которой лежит двухмерная таблица. Ячейки таблицы могут содержать числа, строки или формулы, задающие зависимость ячейки от других ячеек. Пользователь может просматривать, задавать и изменять значение ячеек. Изменение значение ячейки ведет к моментальному изменению значений зависящих от нее ячеек.

Табличные процессоры обеспечивают также задание формата изображения, поиск и сортировку. Применение электронных таблиц упрощает работу с данными и позволяет получать результаты без проведения расчётов вручную. Расчёт по заданным формулам выполняется автоматически. Изменение содержимого, какой-либо ячейки приводит к перерасчёту значений всех ячеек, которые связаны с ней формульными отношениями. Электронные таблицы используются во всех сферах человеческой деятельности, но особо широко используются для проведения экономических и бухгалтерских расчётов.

В настоящее время наиболее популярными и эффективными пакетами данного класса являются Excel, Calc, Quatro Pro, Lotus 1–2–3.

Электронная таблица – компьютерный эквивалент обычной таблицы, в клетках (ячейках) которой записаны данные различных типов: тексты, даты, формулы, числа.

Результат вычисления формулы в клетке является изображением этой клетки. Числовые данные и даты могут рассматриваться как частный случай формул. Для управления электронной таблицей используется специальный комплекс программ – табличный процессор.

Главное достоинство электронной таблицы – это возможность мгновенного пересчета всех данных, связанных формульными зависимостями при изменении значения любого операнда.

При работе с табличным процессором на экран выводится прямоугольная таблица, в клетках которой могут находиться числа, пояснительные тексты и формулы для расчета значений в клетке по имеющимся данным (рис.1). То есть программные средства для проектирования электронных таблиц называют табличными процессорами. Они позволяют не только создавать таблицы, но и автоматизировать обработку табличных данных. С помощью электронных таблиц можно выполнять различные  инженерные расчеты, а также строить разного рода диаграммы, проводить сложный экономический анализ, моделировать и оптимизировать решение различных хозяйственных ситуаций и т.д.

  1. Функции табличных процессоров.

Функции табличных процессоров весьма разнообразны:

  • создание и редактирование электронных таблиц;
  • создание многотабличных документов;
  • оформление и печать электронных таблиц;
  • построение диаграмм, их модификация и решение экономических задач графическими методами;
  • создание многотабличных документов, объединенных формулами;
  • работа с электронными таблицами как с базами данных: сортировка таблиц, выборка данных по запросам;
  • создание итоговых и сводных таблиц;
  • использование при построении таблиц информации из внешних баз данных;
  • создание слайд-шоу;
  • решение оптимизационных задач;
  • решение экономических задач типа “что – если” путем подбора параметров;
  • разработка макрокоманд, настройка среды под потребности пользователя и т.д.
  1. Структура электронной таблицы.

Строки, столбцы, ячейки и их адреса.

Рабочая область электронной таблицы состоит из строк и столбцов, имеющих свои имена. Именами строк  являются их номера. Нумерация строк начинается с 1 и заканчивается максимальным числом, установленным для данной программы. Имена столбцов – это буквы латинского алфавита сначала от А до Z , затем от АА до AZ , ВА до BZ и т. д.

Максимальное количество строк и столбцов определяется особен-ностями используемой программы и объемом памяти компьютера, Современные программы дают возможность создавать электронные таблицы, содержащие более 1 млн. ячеек, хотя для практических целей в большинстве случаев этого не требуется.

Пересечение строки и столбца образует ячейку таблицы, имеющую свой уникальный адрес. Для указания адресов ячеек в формулах используются ссылки (например, А2 или С4).

Ячейка – область, определяемая пересечением столбца и строки электронной таблицы.

Адрес ячейки – определяется названием (номером) столбца и номером строки.

Ссылка – способ (формат) указания адреса ячейки.

Указание блока ячеек.

В электронной таблице существует понятие блока (диапазона) ячеек, также имеющего свой уникальный адрес. В качестве блока ячеек может рассматриваться строка или часть строки, столбец или часть столбца, а также прямоугольник, состоящий из нескольких строк и столбцов или их частей (рис. 1). Адрес блока ячеек задается указанием ссылок первой и последней его ячеек, между которыми, например, ставится разделительный символ – двоеточие <:> или две точки подряд <..>.

Рис. 1. Вид электронной таблицы на экране

Пример:

Адрес ячейки, образованной на пересечении столбца G и строки 3, будет выражаться ссылкой G3.

Адрес блока, образованного в виде части строки 1, будет А1..Н1.

Адрес блока, образованный в виде столбца B, будет В1..В10.

Адрес блока, образованный в виде прямоугольника, будет D4..F5.

Каждая команда электронной таблицы требует указания блока (диапазона) ячеек, в отношении которых она должна быть выполнена.

Блок используемых ячеек может быть указан двумя путями: либо непосредственным набором с клавиатуры начального и конечного адресов ячеек, формирующих диапазон, либо выделением соответствующей части таблицы при помощи клавиш управления курсором. Удобнее задавать диапазон выделением ячеек.

Типичными установками, принимаемыми по умолчанию на уровне всех ячеек таблицы, являются: ширина ячейки в 9 разрядов, левое выравнивание для символьных данных и основной формат для цифровых данных с выравниванием вправо.

Блок ячеек – группа последовательных ячеек. Блок ячеек может состоять из одной ячейки, строки (или ее части), столбца (или его части), а также последовательности строк или столбцов (или их частей).

Типовая структура интерфейса.

Как видно на рис. 1, при работе с электронной таблицей на экран выводятся рабочее поле таблицы и панель управления. Панель управления обычно включает: Главное меню, вспомогательную область управления, строку ввода и строку подсказки. Расположение этих областей на экране может быть произвольным и зависит от особенностей конкретного табличного процессора.

Строка главного меню содержит имена меню основных режимов программы. Выбрав один из них, пользователь получает доступ к ниспадающему меню, содержащему перечень входящих в него команд. После выбора некоторых команд ниспадающего меню появляются дополнительные подменю.

Вспомогательная область управления включает:

∙ строку состояния;

∙ панели инструментов;

∙ вертикальную и горизонтальную линейки прокрутки.

В строке состояния (статусной строке) пользователь найдет сведения о текущем режиме работы программы, имени файла текущей электронной таблицы, номере текущего окна и т.п. Панель инструментов (пиктографическое меню) содержит определенное количество кнопок (пиктограмм), предназначенных для быстрой активизации выполнения определенных команд меню и функций программы. Чтобы вызвать на экран те области таблицы, которые на нем в настоящий момент не отображены, используются вертикальная и горизонтальная линейки прокрутки . Бегунки (движки) линеек прокрутки показывают относительную позицию активной ячейки в таблице и используются для быстрого перемещения по ней. В некоторых табличных процессорах на экране образуются специальные зоны быстрого вызова. При щелчке мыши в такой зоне вызывается соответствующая функция. Например, при щелчке мыши на координатной линейке вызывается диалог задания параметров страницы.

Строка ввода отображает вводимые в ячейку данные. В ней пользователь может просматривать или редактировать содержимое текущей ячейки. Особенность строки ввода – возможность видеть содержащуюся в текущей ячейке формулу или функцию, a не ее результат. Строку ввода удобно использовать для просмотра или редактирования текстовых данных.

Строка подсказки предназначена для выдачи сообщений пользователю относительно его возможных действий в данный момент.

Приведенная структура интерфейса является типичной для табличных процессоров, предназначенных для работы в среде Windows. Для табличных процессоров, работающих в DOS, чаще всего отсутствуют командные кнопки панелей инструментов и линейки прокрутки.

Рабочее поле – пространство электронной таблицы, состоящее из ячеек, названий столбцов и строк.

Панель управления – часть экрана, дающая пользователю информацию об активной ячейке и ее содержимом, меню и режиме работы.

Текущая ячейка и экран.

Текущей (активной) называется ячейка электронной таблицы, в которой в данный момент находится курсор. Адрес и содержимое текущей ячейки выводятся в строке ввода электронной таблицы. Перемещение курсора как по строке ввода, так и по экрану осуществляется при помощи клавиш движения курсора.

Возможности экрана монитора не позволяют показать всю электронную таблицу. Мы можем рассматривать различные части электронной таблицы, перемещаясь по ней при помощи клавиш управления курсором. При таком перемещении по таблице новые строки (столбцы) автоматически появляются на экране взамен тех, от которых мы уходим. Часть электронной таблицы, которую мы видим на экране монитора, называется текущим (активным) экраном.

Окно, рабочая книга, лист.

Основные объекты обработки информации – электронные таблицы – размещаются табличным процессором в самостоятельных окнах, и открытие или закрытие этих таблиц есть, по сути, открытие или закрытие окон, в которых они размещены. Табличный процессор дает возможность открывать одновременно множество окон, организуя тем самым «многооконный режим» работы. Существуют специальные команды, позволяющие изменять взаимное расположение и размеры окон на экране. Окна, которые в настоящий момент мы видим на экране, называются текущими (активными).

Рабочая книга представляет собой документ, содержащий несколько листов, а которые могут входить таблицы, диаграммы или макросы. Мы може  создать книгу для совместного хранения в памяти интересующих нас листов и указать, какое количество листов она должна содержать. Все листы рабочей книги сохраняются в одном файле. Заметим, что, термин «рабочая книга» не является стандартным. Так, например, табличный процессор Framework вместо него использует понятие Frame (рамка).

2. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ИНФОРМАЦИОННОГО МОДЕЛИРОВАНИЯ

2.1. Понятие модели.

Слово «модель» произошло от латинского слова «modulus», означает «мера», «образец». Его первоначальное значение было связано со строительным искусством и почти во всех европейских языках оно употреблялось для обозначения образа или прообраза, или вещи, сходной в каком-то отношении с другой вещью.

Моделирование в научных исследованиях применялось еще в глубокой древности и постепенно захватило все новые области научных знаний: техническое конструирование, строительство и архитектуру, астрономию, физику, химию, биологию и, наконец, общественные науки. Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования XX век. Постепенно стала осознаваться роль моделирования как универсального метода научного познания.

Термин «модель» широко используется различных сферах человеческой деятельности и имеет множество смысловых значений.

Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале. [2]

Под моделированием понимается процесс построения, изучения и применения моделей. Оно тесно связано с такими категориями, как абстракция, аналогия, гипотеза и др. Процесс моделирования обязательно включает и построение абстракций, и умозаключения по аналогии, и конструирование научных гипотез.

2.2 Метод моделирования.

Главная особенность моделирования в том, что это метод опосредованного познания с помощью объектов-заместителей. Модель выступает как своеобразный инструмент познания, который исследователь ставит между собой и объектом, и с помощью которого изучает интересующий его объект. Именно эта особенность метода моделирования определяет специфические формы использования абстракций, аналогий, гипотез, других категорий и методов познания.

В самом общем случае при построении модели исследователь отбрасывает те характеристики, параметры объекта-оригинала, которые несущественны для изучения объекта. Выбор характеристик объекта-оригинала, которые при этом сохраняются и войдут в модель, определяется целями моделирования. Обычно такой процесс абстрагирования от несущественных параметров объекта называют формализацией. Более точно, формализация - это замена реального объекта или процесса его формальным описанием.

Практически во всех науках о природе, живой и неживой, об обществе, построение и использование моделей является мощным орудием познания. Реальные объекты и процессы бывают столь многогранны и сложны, что лучшим (а иногда и единственным) способом их изучения часто является построение и исследование модели, отображающей лишь какую-то грань реальности и потому многократно более простой, чем эта реальность.

2.3. Классификация моделей.

Границы между моделями различных типов или классов, а также отнесение модели к какому-то типу или классу чаще всего условны. Рассмотрим наиболее распространенные признаки, по которым классифицируются модели.

1) Классификация моделей по области использования:

Учебные модели – используются при обучении.

Опытные – это уменьшенные или увеличенные копии проектируемого объекта. Используют для исследования и прогнозирования его будущих характеристик.

Научно-технические - создаются для исследования процессов и явлений.

Игровые – репетиция поведения объекта в различных условиях

Имитационные – отражение реальности в той или иной степени (это метод проб и ошибок).

2) Классификация моделей по фактору времени:

Статические - модели, описывающие состояние системы в определенный момент времени (единовременный срез информации по данному объекту). Примеры моделей: классификация животных, строение молекул, список посаженных деревьев, отчет об обследовании состояния зубов в школе и тд..

Динамические – модели, описывающие процессы изменения и развития системы (изменения объекта во времени). Примеры: описание движения тел, развития организмов, процесс химических реакций.

3) Классификация моделей по отрасли знаний - это классификация по отрасли деятельности человека:

Математические, биологические, химические, социальные, экономические, исторические и т.д..

 4) Классификация моделей по форме представления:

Материальные – это предметные (физические) модели. Они всегда имеют реальное воплощение. Отражают внешнее свойство и внутреннее устройство исходных объектов, суть процессов и явлений объекта-оригинала. Это экспериментальный метод познания окружающей среды. Примеры: детские игрушки, скелет человека, чучело, макет солнечной системы, школьные пособия, физические и химические опыты

Абстрактные (нематериальные) – не имеют реального воплощения. Их основу составляет информация. Это теоретический метод познания окружающей среды. По признаку реализации они бывают:  мысленные и вербальные; информационные.

Мысленные модели формируются в воображении человека в результате раздумий, умозаключений, иногда в виде некоторого образа. Это модель сопутствует сознательной деятельности человека.

Вербальные – мысленные модели, выраженные в разговорной форме. Используются для передачи мыслей.

Информационные модели – целенаправленно отобранная информация об объекте, которая отражает наиболее существенные для исследователя свойств этого объекта.

По степени формализации информационные модели бывают:

Образно-знаковые: геометрические (рисунок, пиктограмма, чертеж, карта, план, объемное изображение); структурные (таблица, граф, схема, диаграмма); словесные (описание естественными языками); алгоритмические (нумерованный список, пошаговое перечисление, блок-схема).

Знаковые модели: математические – представлены математическими формулами, отображающими связь параметров; специальные – представлены на спец. языка (ноты, химические формулы); алгоритмические – программы.

2.4. Математические модели.

Широко распространенным видом моделирования является математическое моделирование. Математическая модель отражает существенные свойства объекта или процесса языком уравнений и других математических средств. Математическое моделирование стало чрезвычайно мощным средством познания в естественных, технических и социальных науках, экономике, многих видах практической деятельности, и заслуживает углубленного изучения.

 Математическое моделирование, являющееся основой компьютерного моделирования, появилось задолго до создания компьютеров. Однако возможности компьютеров позволили ученым моделировать сложные динамические явления природы, а также сложные экономические и социальные процессы.

Цель создания компьютерной математической модели — это проведение численного эксперимента, который позволяет исследовать моделируемую систему, спрогнозировать ее поведение, подобрать оптимальные параметры и пр.

Характерные признаки компьютерной математической модели:

  • наличие реального объекта моделирования;
  • наличие количественных характеристик объекта: входных и выходных параметров;
  • наличие математической связи между входными и выходными параметрами;
  • реализация модели с помощью определенных компьютерных средств.

2.5. Основные этапы моделирования.

Моделирование — творческий процесс. Заключить его в формальные рамки очень трудно. В наиболее общем виде его можно представить поэтапно в следующем виде.

        I этап. Постановка задачи

        Под задачей в самом общем смысле понимается некая проблема, которую надо решить. Главное — определить объект моделирования и понять, что собой должен представлять результат.

        По характеру постановки все задачи можно разделить на две основные группы. К первой группе можно отнести задачи, в которых требуется исследовать, как изменяется характеристика объекта при некотором воздействии на него. Такую постановку задачи принято называть “что будет, если...”. Вторая группа задач имеет такую обобщенную формулировку: какое надо произвести воздействие на объект, чтобы его параметры удовлетворяли некоторому заданному условию? Такая постановка задачи часто называется “как сделать, чтобы...”.

        Цели моделирования определяются расчетными параметрами модели. Чаще всего это поиск ответа на вопрос, поставленный в формулировке задачи.

        Далее переходят к описанию объекта или процесса.        Иногда задача может быть уже сформулирована в упрощенном виде, и в ней четко поставлены цели и определены параметры модели, которые надо учесть.

        При анализе объекта необходимо ответить на следующий вопрос: можно ли исследуемый объект или процесс рассматривать как единое целое или же это система, состоящая  из более простых объектов? Если это единое целое, то можно перейти к построению информационной модели. Если система — надо перейти к анализу объектов, ее составляющих, определить связи между ними.

        II этап. Разработка модели

        По результатам анализа объекта составляется информационная модель. В ней детально описываются все свойства объекта, их параметры, действия и взаимосвязи.

        Далее информационная модель должна быть выражена в одной из знаковых форм. Учитывая, что мы будем работать в среде электронных таблиц, то информационную модель необходимо преобразовать в математическую. На основе информационной и математической моделей составляется компьютерная модель в форме таблиц, в которой выделяются три области данных: исходные данные, промежуточные расчеты, результаты. Исходные данные вводятся “вручную”. Расчеты, как промежуточные, так и окончательные, проводятся по формулам, записанным по правилам электронных таблиц.

        III этап. Компьютерный эксперимент

        Чтобы дать жизнь новым конструкторским разработкам, внедрить новые технические решения в производство или проверить новые идеи, нужен эксперимент. В недалеком прошлом такой эксперимент можно было провести либо в лабораторных условиях на специально создаваемых для него установках, либо на натуре, т.е. на настоящем образце изделия, подвергая его всяческим испытаниям. Это требует больших материальных затрат и времени. В помощь пришли компьютерные исследования моделей. При проведении компьютерного эксперимента проверяют правильность построения моделей. Изучают поведение модели при различных параметрах объекта. Каждый эксперимент сопровождается осмыслением результатов. Если результаты компьютерного эксперимента противоречат смыслу решаемой задачи, то ошибку надо искать в неправильно выбранной модели или в алгоритме и методе ее решения. После выявления и устранения ошибок компьютерный эксперимент повторяется.

        IV этап. Анализ результатов моделирования

        Заключительный этап моделирования — анализ модели. По полученным расчетным данным проверяется, насколько расчеты отвечают нашему представлению и целям моделирования. На этом этапе определяются рекомендации по совершенствованию принятой модели и, если возможно, объекта или процесса.

3. СОЗДАНИЕ ПРОСТЫХ МАТЕМАТИЧЕСКИХ МОДЕЛЕЙ С ПОМОЩЬЮ ЭЛЕКТРОННЫХ ТАБЛИЦ

3.1.Преимущества электронных таблиц при моделировании.

Электронные таблицы (или табличные процессоры) - это прикладные программы, предназначенные для проведения табличных расчётов. Данное средство информационных технологий, позволяет решать целый комплекс задач, и прежде всего, выполнение вычислений. Многие расчёты выполняются в табличной форме, особенно в области делопроизводства: многочисленные расчётные ведомости, сметы расходов и т. д. Кроме того, в табличной форме удобно выполнять решение численными методами целого ряда математических задач.

Электронные таблицы (ЭТ) являются удобным инструментом для автоматизации таких вычислений. Решения многих вычислительных задач на ЭВМ, которые раньше можно было осуществить только путём программирования, стало возможным осуществлять с помощью электронных таблиц. Использование математических формул в ЭТ позволяет представить взаимосвязь между различными параметрами некоторой реальной системы. Основное свойство ЭТ — мгновенный пересчёт значений рассчитываемых показателей при изменении входящих данных. Благодаря этому свойству, таблица представляет собой удобный инструмент для организации численного эксперимента.

Дополнительные удобства для моделирования даёт возможность графического представления данных (диаграммы), а также возможность использования электронной таблицы в качестве базы данных. Электронные таблицы просты в обращении, значительно упрощают и ускоряют работу.

3.2. Виды программ для работы с электронными таблицами.

В настоящее время наиболее распространённая программа для работы с электронными таблицами - MS Excel, которая является составной частью пакета MS Office. Широкое распространение получил и пакет  OpenOffice.org, в том числе и его составляющая для работы с электронными таблицами  Calc. Данные пакеты программ, в том числе и для работы с электронными таблицами, имеют схожие возможности.

Электронная таблица в MS Excel и OpenOffice.org Calc (рабочий лист) — это множество элементарных ячеек, каждая из которых имеет адрес, определяемый координатами по вертикали (столбцы) и горизонтали (строки). Столбцы рабочего листа именуются, а строки нумеруются. (рис.2)

Каждый документ в MS Excel называется рабочей книгой и состоит из нескольких рабочих листов. Книга в MS  Excel представляет собой файл с расширением .xls (и xlsx в версии 2007 года), предназначенный для хранения и обработки данных.  В OpenOffice.org Calc рабочие книги можно сохранять в виде файлов с различными расширениями (основным расширением файла является .ods). Данная программа открывает файлы созданные в   MS Excel (с расширениями  .xls и  .xlsx) и возможно сохранение файлов с расширением  .xls, то есть такие файлы можно открывать и редактировать в  MS Excel. В свою очередь, файлы с расширением .ods в программе  MS Excel открывать и редактировать нельзя.

Рис. 2 Внешний вид главного окна OOCalc

Для ввода данных в программах MS  Excel и  OpenOffice.org Calc нужно выбрать ячейку и ввести то, что требуется. Набираемые данные отображаются в ячейке и в строке ввода, которая особенно полезна с учётом того, что ячейка может содержать больше символов, чем позволяет отобразить её текущая ширина. В ячейку можно вводить числовые значения, текст, а также дату и время. Причём можно выбирать формат ячеек (числовой, текстовой, формат даты и времени). Если текст начинается со знака "=", то он не отображается в ячейке, поскольку эти программы считают такой текст формулой. Если нужно напечатать текст, начинающийся со знака "=", то необходимо самым первым символом поставить знак одинарной кавычки. Если есть необходимость начать строку со знака кавычки, то необходимо напечатать кавычку два раза.

Основными возможностями  программ MS  Excel и  OpenOffice.org Calc являются: вычисления с помощью формул, вводимых в ячейки; использование встроенных функций, построение диаграмм и графиков.

В OOCalc и  MS  Excel доступны следующие основные арифметические операции:

"+" – сложение;

"-" – вычитание;

"*" – умножение;

"/" – деление;

"^" – возведение в степень;

":" – задание диапазона.

Кроме этих операций, в этих программах доступен обширный набор функций следующих категорий:

● работа с базами данных;

● обработка времени и дат;

● финансовые;

● информационные;

● логические;

● математические;

● работа с массивами;

● статистические;

● текстовые;

● дополнительные [5].

Для удобства написания формул в OOCalc и  MS  Excel используется Мастер функций. В OOCalc кнопка «Мастер функций» находится слева от строки ввода.

Рис. 3 Мастер функций в программе  OOCalc

В программах OOCalc и  MS  Excel можно вставлять диаграммы и графики вычислений. Для этого надо выделить столбцы со значениями, например, выделяются два столбца A и B. В программе в программе  OOCalc из меню (или панели инструментов) выбирается пункт «Вставка -  Диаграмма». Необходимо выбрать тип диаграммы:

Двумерные диаграммы:

● линии;

● с областями;

● гистограмма;

● линейчатая;

● круговая;

● диаграмма XY;

● сетчатая;

● биржевая.

Трехмерные диаграммы

● график 3М;

● с областями 3М;

● гистограмма 3М;

● линейчатая 3М;

● круговая 3М.

Перечисленные возможности программ  OOCalc и  MS  Excel являются востребованными и часто используются при математическом моделировании.

3.3.Примеры  исследований математических моделей в электронных таблицах.

Задача 1. Необходимо покрасить краской стены кухни. Сколько потребуется банок краски, если известно, что размеры кухни 405 × 310 × 285 см; 88% площади стен занимает кафельная плитка; 1 банка краски предназначена для покраски площади 5 м2?

I этап. Постановка задачи.

Описание задачи. 

a = 405 см – длина комнаты,
b = 310 см – ширина комнаты,
c = 285 см – высота комнаты,
1 – 0,88 = 0,12 – часть комнаты для покраски (без кафеля),
5 м
2 – площадь покраски при использовании 1 банки краски.

Цель моделирования. Определить необходимое количество краски.

Формализация задачи в виде поиска ответов на вопросы.

Таблица 1. Формализация задачи 1

Уточняющий вопрос

Ответ

Что моделируется?

Система, состоящая из двух объектов: комнаты и краски.

Форма комнаты?

Прямоугольная.

Что известно о комнате?

Размеры задаются длиной (а), шириной (b), высотой (с).

Как учитывается окрашиваемая поверхность?

88% не окрашивается, следовательно, можно рассчитать процент окрашиваемой поверхности.

Что известно о краске?

1 банка предназначена для покраски 5 м2.

Можно ли купить часть банки с краской?

Нет. Количество банок с краской должно быть целым.

Что надо определить?

Необходимое количество банок с краской.

II этап. Разработка модели.Информационная модель.                                            

Таблица 2. Информационная модель задачи 1

Объект

Параметры

Название

Значение

Краска

Наименование образцов

Площадь покраски при использовании 1 банки (S1 банка)

Исходные данные

Расчетные данные

Комната

Длина (а)

Ширина (b)

Высота (с)

Неокрашиваемая поверхность (Sстен с кафелем)

Площадь стен (Sстен для покраски.)

Исходные данные

Исходные данные

Исходные данные

Рекомендуется 88%

Расчетные данные

Система

Количество банок (К)

Результаты

Дополним информационную модель в табличной форме математической моделью. Sстен с кафелем =2(a + b)c; Sстен для покраски = 2(a + b)c * 0,12.

Чтобы определить, сколько потребуется банок краски, надо площадь для покраски разделить на 5 м2, т. е. Sстен для покраски /5 и результат округлить до целых.

 На основе информационной и математической моделей составляется компьютерная модель. Заносим данные задачи в электронную таблицу, вводим формулы.

Рис. 4 Электронная таблица в режиме отображения формул

Рис. 5 Электронная таблица в режиме отображения значений

III этап. Компьютерный эксперимент.

  1. Проведем расчет количества банок краски, необходимых для покраски стен кухни.
  2. Изменим данные (1 банку краски хватит на 2 м2, 1 м2, 3 м2, 0,5 м2) и проследим за пересчетом результатов.

IV этап. Анализ результатов. С помощью MS Excel мы определили, что для покраски стен кухни необходима 1 банка краски. Можно также определить, сколько краски понадобится, если размер кухни будет иным или 1 банку краски хватит на иную площадь.

Задача 2.  Площадь прямоугольника 64 см2. Какую длину должны иметь его стороны, чтобы периметр был наименьшим?

I этап. Постановка задачи.

Описание задачи.

a – длина прямоугольника,
b   – ширина прямоугольника,
S=64 см
2 - площадь прямоугольника,
P – периметр прямоугольника.
Цель моделирования. Определить длину каждой стороны прямоугольника, чтобы периметр был наименьшим.

Формализация задачи в виде поиска ответов на вопросы.

Таблица 3. Формализация задачи 2

Уточняющий вопрос

Ответ

Что моделируется?

Фигура, состоящая из двух объектов: ширины и длины.

Форма фигуры?

Прямоугольная.

Что известно о фигуре?

Размеры задаются длиной (а), шириной (b), площадью (S), периметром (Р).

В какой зависимости находятся объекты в фигуре?

Площадь равна произведению длины и ширины.

Периметр – сумма длин всех сторон.

Что известно о площади?

Площадь – величина постоянная, S=64см2.

Что известно о периметре?

Периметр должен быть наименьшим возможным.

Что надо определить?

Длины сторон прямоугольника при наименьшем периметре.

II этап. Разработка модели. Информационная модель.

Таблица 4. Информационная модель задачи 2

Объект

Параметры

Название

Значение

Длина  

Размер (a)

Результаты

Ширина  

Размер (b)

Расчетные данные

Площадь  

Произведение длины и ширины (S)

Исходные данные, в задаче константа

Периметр

Периметр – сумма длин всех сторон.

Расчетные данные

Дополним информационную модель в табличной форме математической моделью. Sпрям. =a*b; Pпрям.= 2(a + b). Чтобы определить размер длины, нужно площадь прямоугольника разделить на размер ширины, т. е. b=S/a.

 На основе информационной и математической моделей составляется компьютерная модель. Заносим данные задачи в электронную таблицу, вводим формулы. В ячейке B3 (значение длины) будет подбираться значение, поэтому ничего не вводим. В ячейку B4 вводим формулу для вычисления ширины, в ячейку B5 – для вычисления площади, в ячейку B6 – для вычисления периметра.

Рис. 6 Электронная таблица в режиме отображения формул

III этап. Компьютерный эксперимент.

  1. Установив курсор в ячейке со значением периметра B6, который по условию должен быть наименьшим, в «Сервис – Поиск решений», установим целевую ячейку $B$6 равной минимальному значению, изменяя ячейки $B$3
  2. Изменим данные (пусть площадь будет равна 36 см2, 100 см2, 150 см2) и проследим за пересчетом результатов.

IV этап. Анализ результатов. С помощью MS Excel мы определили, что, если площадь прямоугольника равна 64 см2, стороны будут равны 8 см, периметр в этом случае будет наименьшим.

Задача 3. У маленького Васи есть небольшой бассейн во дворе. Иногда Вася ходит к речке и приносит воду в бассейн в небольшой цистерне цилиндрической формы. Известны ширина - 4,3 м, высота – 2 м, длина –

5,8 м бассейна и объем цистерны 4,5 м3. Сколько раз Васе нужно сходить к речке за водой, чтобы наполнить бассейн наполовину?

I этап. Постановка задачи.

Описание задачи. 

ДБ – длина бассейна,
ШБ – ширина бассейна,

ВБ – высота бассейна,
ОбЦ – объём цистерны.
Цель моделирования. Определить количество походов к реке за водой, чтобы наполнить бассейн наполовину.

Формализация задачи в виде поиска ответов на вопросы.

Таблица 5. Формализация задачи 3

Уточняющий вопрос

Ответ

Что моделируется?

Система, состоящая из бассейна и воды.

Форма бассейна?

Параллелепипед.

Что известно о бассейне?

Размеры бассейна задаются длиной (ДБ), шириной (ШБ), высотой (ВБ).

Как учитывается заполняемое водой пространство?

Бассейн должен быть заполнен наполовину.

Что надо знать о воде?

Ее приносят в бассейн цистерной в форме цилиндра.

Что надо определить?

Сколько раз (N) нужно сходить к речке за водой, чтобы наполнить бассейн наполовину?

II этап. Разработка модели.

Информационная модель.

Таблица 6. Информационная модель задачи 3

Объект

Параметры

Название

Значение

Вода

Объем цистерны (ОбЦ)

Исходные данные

Расчетные данные

Бассейн

Длина (ДБ)

Ширина (ШБ)

Высота (ВБ)

Объем бассейна (ОБ)

Исходные данные

Исходные данные

Исходные данные

Расчетные данные

Система

Количество походов за водой (N)

Результаты

Дополним информационную модель в табличной форме математической моделью. ОБб=ДБ*ВБ*ШБ. Чтобы определить, сколько раз нужно сходить к речке за водой, чтобы наполнить бассейн наполовину, нужно объем бассейна разделить на объем цистерны и разделить на 2, т. е. N= ОБб/ОБЦ/2. Данный результат, скорее всего, будет представлен десятичной дробью. Округляем его до целых.  На основе информационной и математической моделей составляется компьютерная модель. Заносим данные задачи в электронную таблицу, вводим формулы.

Рис. 7 Электронная таблица в режиме отображения формул

III этап. Компьютерный эксперимент.

Изменим данные,  проследим за пересчетом результатов.

Таблица 7. Изменение параметров задачи 3

№ экспери-мента

Длина бас-сейна

Ширина бассейна

Высота бассейна

Объем цистерны

Объем бассейна

Количество походов за водой

1.

5,8 м

4,3 м

2 м

4,5 м3

49,88 м3 

6 раз

2.

5,8 м

3 м

2 м

4,5 м3

34,8 м3

4 раза

3.

5,8 м

3 м

1 м

4,5 м3

17,4 м3

2 раза

4.

4 м

3 м

1 м

4,5 м3

12 м3

2 раза

5.

4 м

3 м

1 м

3 м3

12 м3

2 раза

IV этап. Анализ результатов. Полученная модель позволяет пересчитывать количество походов за водой для наполнения бассейна при изменении каких-либо параметров (ширина, длина, высота бассейна, объем цистерны).

ЗАКЛЮЧЕНИЕ

В процессе написания реферата была изучен материал,  связанный с теоретическими основами моделирования, использованием метода моделирования, рассмотрен материал о структуре электронных таблиц, было дано понятие табличных процессоров и указаны варианты их использования.

Дано определение понятию модели, приведена классификация различных моделей, исследованы основные возможности программ MS Excel и OpenOffice.org Calc. Также рассмотрены математические модели  и исследовано их поведения с помощью электронных таблиц.

Тема, освещённая в данной работе, актуальна, т.к. понятия табличный процессор,  модель  – фундаментальное понятие информатики. Оно проходит через весь курс информатики. В процессе познания окружающего мира человечество постоянно использует  моделирование и формализацию. Очень часто формализованная модель выражается с помощью математических формул, т.е. математическая модель – одна из наиболее используемых.
Основной инструмент при создании и исследовании моделей – компьютер. Прикладные программы, табличные процессоры  помогают быстро и надёжно исследовать созданные модели и представлять наглядный результат.

СПИСОК ЛИТЕРАТУРЫ:

  1. Биллиг В.А., Дехтярь М.И. VBA и Office ХР. Офисное программирование. -М.: Русская редакция, 2004.

  1. Ефимова О.В., Морозов В.В., Угринович Н.Д. Курс компьютерной технологии с основами информатики. -М.: АБФ, ACT, 1999.

  1. Каратыгин С. и др. Базы данных: Простейшие средства обработки информации. Электронные таблицы. Системы управления базами данных. Т.1 /Каратыгин С., Тихонов А., Долголаптев В. -М.: ABF, 1995.

  1. Microsoft Excel. [Википедия] (01.12.12), /http://ru.wikipedia.org/wiki/Microsoft_Excel
  2. Макарова Н. В. Информатика. 7-9 класс. Базовый курс. Задачник по моделированию. – СПб.: Питер, 2007.

  1. Табличный процессор. [Википедия] (01.12.12), /http://ru.wikipedia.org/wiki/Табличный_ процессор  

  1. Церенова О. А. Математическое моделирование: Пособие для учителя. - Пермь: Перм. гос. пед. ун-т, 1995.

  1. Пакеты прикладных программ: Учеб. пособие для сред, проф. образования / Э. В. Фуфаев, Л. И. Фуфаева. --М.: Издательский центр «Академия», 2004. -352 с.
  2. Http://www.delcomp.ru/011_1.html

  1.  Http://www.revolution.allbest.ru./programming/00046883.html

  1.  Http://www.revolution.allbest.ru./programming/000004026.htm

  1.  Http://www.revolution.albest.ru./programming/00018498_0.html