Химическая организация клетки. Неорганические вещества клетки. Органические вещества клетки. Белки.
Химическая организация клетки. Неорганические вещества клетки.
Органические вещества клетки. Белки.
Скачать:
Вложение | Размер |
---|---|
himicheskiy_sostav_kletki_belki.docx | 270.59 КБ |
Предварительный просмотр:
Тема: Химическая организация клетки. Неорганические вещества клетки.
Органические вещества клетки. Белки.
Цель: изучить химический состав клетки, выявить роль неорганических веществ и белков в клетке.
Задачи:
- Образовательные: показать многообразие химических элементов и соединений, входящих в состав живых организмов, значение их в процессе жизнедеятельности;
- Развивающие: продолжить формирование умений и навыков работы с учебником, умение выделять главное;
- Воспитательные: продолжить формирование научного мировоззрения.
Домашнее задание:
- Конспект по теме: Химическая организация клетки. Неорганические вещества клетки. Органические вещества клетки. Белки.
- Повторить темы: Введение в общую биологию, Клетка: история изучения клетки. Клеточная теория, Строение и правила работы с микроскопом.
Химическая организация клетки. Неорганические вещества клетки.
Органические вещества клетки. Белки.
Из всех элементов периодической системы Д. И. Менделеева в организме человека обнаружено 86 постоянно присутствующих, из них 25 необходимы для нормальной жизнедеятельности, 18 из которых абсолютно, а 7 полезны. Профессор В. Р. Вильямс назвал их элементами жизни.
В состав веществ, участвующих в реакциях, связанных с жизнедеятельностью клетки, входят почти все известные химические элементы, причем на долю четырех из них приходится около 98% массы клетки. Это кислород (65-75%), углерод (15-18%), водород (8-10%) и азот (1,5-3,0%).
Все химические элементы клетки, по количеству содержанию, можно разделить на несколько групп:
Элементарный химический состав клетки
Макроэлементы | I группа (основные): O, C, N, H | Главные компоненты всех органических соединений, на долю этих элементов приходится 98% от массы живых клеток. |
II группа: P, S, K, Mg, Na, Ca, Fe, Cl, Si | Обязательные компоненты всех живых организмов, 1-2% от массы живых клеток. | |
Микроэлементы | Al, Mn, Zn, Mo, Co, Ni, I, Br, F, Bидр. | Входят в состав биологически активных соединений (ферментов, гормонов и витаминов) и влияют на обмен веществ; оказывают влияние на усвоение организмом других микроэлементов; могут накапливаться в живых организмах (например, водоросли накапливают йод, лютики – литий, ряска – радий и т. д.). Суммарное содержание около 0,1%. |
Ультрамикроэлементы | Au, Be, Ag, U, Hg, Ra (радий), Se (селен) | Физиологическая роль этих компонентов в живых организмах до конца не установлена, суммарное содержание менее 0,01% |
Клетка состоит из органических (белки, жиры, углеводы, нуклеиновые кислоты) и неорганических веществ (вода и минеральные соли).
Вода
Содержание воды колеблется от вида организма, условий его местообитания, типа клеток и их функционального состояния. Например, в клетках костной ткани воды содержится 20%, жировой ткани – 40%, мышечной ткани – 76%, в клетках эмбриона – более 90%. С возрастом количество воды в клетках любого организма значительно снижается. Вода необходима для осуществления жизненных процессов в клетке. Ее основные функции следующие:
1. Универсальный растворитель.
2. Среда, в которой протекают биохимические реакции.
3. Определяет физиологические свойства клетки (ее упругость, объем).
4. Участвует в химических реакциях.
5. Поддерживает тепловое равновесие клетки и организма в целом благодаря высокой теплоемкости и теплопроводности.
6. Основное средство для транспорта веществ.
Минеральные вещества
Минеральные вещества клетки находятся в виде ионов. Наиболее важные из них катионы - это K+ ,Na+, Ca2+, Mg2+, анионы - это Сl–, НСО3–, Н2РО4–.
Концентрация ионов в клетке и окружающей ее среде неодинаковая. Например, содержание калия в клетках в десятки раз выше, чем в межклеточном пространстве. Катионов натрия, наоборот, в 10 раз меньше в клетке, чем вне ее. Снижение концентрации К+ в клетке приводит к уменьшению в ней воды, количество которой возрастает в межклеточном пространстве тем больше, чем выше в межклеточной жидкости концентрация Na+. Уменьшение катионов натрия в межклеточном пространстве приводит к уменьшению в нем содержания воды. Неравномерное распределение ионов калия и натрия с наружной и внутренней стороны мембран нервных и мышечных клеток обеспечивает возможность возникновения и распространения электрических импульсов. Анионы слабых кислот внутри клетки способствуют сохранению определенной концентрации водородных ионов (рН). В клетке поддерживается слабощелочная реакция (рН=7,2).
Минеральные вещества играют большую и многообразную роль в организме человека. Они входят в его структуру и выполняют большое количество важных функций.
1. Регулируют водно-солевой обмен.
2. Поддерживают осмотическое давление в клетках и межклеточных жидкостях.
3. Поддерживают кислотно-щелочное равновесие.
4. Обеспечивают нормальное функционирование нервной, сердечно -сосудистой, пищеварительной и других систем.
5. Обеспечивают процессы кроветворения и свертывания крови.
6. Входят в состав или активируют действие ферментов, гормонов, витаминов и таким образом участвуют во всех видах обмена веществ.
7. Осуществляют регуляцию трансмембранного потенциала, необходимого для нормального функционирования клеток, проведения нервных импульсов и сокращения мышечных волокон.
8. Поддерживают структурную целостность организма.
9. Участвуют в построении тканей организма, особенно костной, где фосфор и кальций являются основными структурными компонентами.
10. Поддерживают нормальный солевой состав крови и участвуют в структуре формирующих ее элементов.
11.Влияют на защитные функции организма, его иммунитет.
12. Являются незаменимой составной частью пищи, а их длительный недостаток или избыток в питании ведет к нарушениям обмена веществ и даже к заболеваниям.
Из органических веществ клетки мы рассмотри белки.
Белки – биополимеры, мономерами которых являются аминокислоты. В образовании природных белков участвует 20 аминокислот.
Автотрофные организмы синтезируют все необходимые им аминокислоты из первичных продуктов фотосинтеза и азотсодержащих неорганических соединений. Для гетеротрофных организмов источником аминокислот является пища. В организме человека и животных некоторые аминокислоты могут синтезироваться из продуктов обмена веществ (в первую очередь — из других аминокислот). Такие аминокислоты называются заменимыми. Другие же, так называемые незаменимые аминокислоты, не могут быть синтезированы в организме и поэтому должны постоянно поступать в него в составе белков пищи. Белки пищи, содержащие остатки всех незаменимых аминокислот, называются полноценными, в отличие от неполноценных, в составе которых отсутствуют остатки тех или иных незаменимых аминокислот.
Незаменимыми аминокислотами для человека являются: триптофан, лизин, валин, изолейцин, треонин, фенилаланин, метионин и лейцин. Для детей незаменимыми являются также аргинин и гистидин.
Строение молекулы аминокислоты:
Наличие как основной, так и кислотной групп обусловливает амфотерность и высокую реакционную способность аминокислот. Аминогруппа (—NH2) одной аминокислоты способна взаимодействовать с карбоксильной группой (—СООН) другой аминокислоты. При этом выделяется молекула воды, а между атомом азота аминогруппы и атомом углерода карбоксильной группы возникает ковалентная связь, которая называется пептидной связью. Образующаяся молекула представляет собой дипептид. На одном конце молекулы дипептида находится свободная аминогруппа, а на другом — свободная карбоксильная группа. Благодаря этому дипептид может присоединять к себе другие аминокислоты, образуя олигопептиды. Если таким образом соединяется более 10 остатков аминокислот, то образуется полипептид.
Уровни организации белковой молекулы
Полипептидные цепи могут быть очень длинными и включать самые разные комбинации аминокислотных остатков. Полипептиды, в состав молекул которых входит от 50 до нескольких тысяч остатков аминокислот, называются белками. Каждый конкретный белок характеризуется строго постоянным составом и последовательностью аминокислотных остатков.
Белки, образованные только остатками аминокислот, называются простыми. Сложными являются белки, имеющие в своем составе компонент неаминокислотной природы. Это могут быть ионы металлов (Fe2+, Zn2+, Mg2+, Мn2+), липиды, нуклеотиды, сахара и др. Простыми белками являются альбумины крови, фибрин, некоторые ферменты (трипсин) и др. Сложные белки — это большинство ферментов, иммуноглобулины (антитела).
Молекулы белков могут принимать различные пространственные формы, которые представляют собой четыре уровня их структурной организации.
Уровень организации | Форма | Химическая связь | Рисунок |
Первичная | Полипетидная цепь | Пептидная | |
Вторичная | Спираль | Водородная (возникает в результате образования водородных связей между атомами водорода NH-групп и атомами кислорода СО-групп разных аминокислотных остатков полипептидной цепи) | |
Третичная | Глобула (шар) | Ионные, водородные, дисульфидные, гидрофобные (взаимодействие радикалов аминокислот с молекулами воды) | |
Четвертичная | Комплекс из нескольких третичных структур органической природы и неорганическое вещество, например, гемоглобин. | Ионные, водородные, гидрофобные |
Белки — преимущественно водорастворимые вещества, именно в водных растворах они проявляют свою функциональную активность. Белковые молекулы несут большой поверхностный заряд. Это сказывается на каталитической активности белков, на проницаемости биологических мембран (белки входят в их состав) и других функциях. Еще одной важной особенностью белков является то, что они проявляют свою активность лишь в узких температурных рамках и в определенном диапазоне кислотности среды.
Одно из основных свойств белков — способность изменять структуру и свойства под влиянием различных факторов (высокая температура, действие концентрированных кислот и щелочей, тяжелых металлов и др.). Процесс нарушения природной структуры белков под влиянием каких-либо факторов без разрушения первичной структуры называется денатурацией (от лат. де — приставка, означающая утрату, натура — природные свойства). Денатурация происходит вследствие разрыва водородных, ионных, дисульфидных и других связей, стабилизирующих пространственную структуру белковых молекул. При этом может утрачиваться их четвертичная, третичная и даже вторичная структура. Денатурация сопровождается потерей биологической активности белка.
Денатурация часто имеет необратимый характер. Однако в ряде случаев после непродолжительного воздействия повреждающего фактора белок может восстановить свое первоначальное состояние. Это явление называется ренатурацией (от лат. ре — приставка, означающая возобновление). Развернутая полипептидная цепь способна самопроизвольно закрутиться в спираль, а затем уложиться в третичную структуру. Это означает, что пространственная структура белка определяется его первичной структурой, т. е. последовательностью аминокислотных остатков.
Функции белков
- Строительная (структурная). Белки входят в состав всех клеток и тканей живых организмов. Белки являются обязательным компонентом всех клеточных мембран и органоидов клетки. Из белков построены элементы цитоскелета, сократительные элементы мышечных волокон. Преимущественно из белков состоят хрящи и сухожилия. В их состав входит белок коллаген. Важнейшим структурным компонентом перьев, волос, ногтей, когтей, рогов, копыт у животных является белок кератин. В состав связок, стенок артерий и лёгких входит структурный белок эластин.
- Двигательная. Сократительные белки обеспечивают способность клеток, тканей, органов и целых организмов изменять форму, двигаться. Так, актин и миозин обеспечивают работу мышц и немышечные внутриклеточные сокращения. Белок тубулин входит в состав микротрубочек веретена деления, ресничек и жгутиков эукариотических клеток.
- Транспортная. Многие белки способны присоединять и переносить различные вещества. Гемоглобин связывает и переносит кислород и углекислый газ. Альбумины крови транспортируют жирные кислоты, глобулины — ионы металлов и гормоны. Многие белки, входящие в состав цитоплазматической мембраны, участвуют в транспорте веществ в клетку и из нее.
- Защитная. Белки предохраняют организм от вторжения чужеродных организмов и от повреждений. Так, в ответ на проникновение чужеродных объектов (антигенов) определенные лейкоциты вырабатывают специфические белки — иммуноглобулины (антитела), участвующие в иммунном ответе организма. Белок интерферон защищает организм от вирусной инфекции. Фибриноген, тромбопластин и тромбин обеспечивают свертывание крови, предотвращая кровопотерю.
- Сигнальная (рецепторная). Некоторые белки клеточных мембран способны изменять свою структуру в ответ на действие внешних факторов. С помощью этих белков происходит прием сигналов из внешней среды и передача информации в клетку. Примером может служить опсин — составная часть зрительного пигмента родопсина, содержащегося в клетках сетчатки глаза.
- Регуляторная. Некоторые пептиды и белки являются гормонами. Они влияют на различные физиологические процессы. Например, инсулин и глюкагон регулируют содержание глюкозы в крови, а соматотропин (гормон роста) — процессы роста и физического развития.
- Каталитическая (ферментативная). Многие белки являются ферментами. Ферменты — это биологические катализаторы, т. е. вещества, ускоряющие протекание химических реакций в живых организмах. Ферменты участвуют в процессах синтеза и расщепления различных веществ. Они обеспечивают фиксацию углерода в процессе фотосинтеза, расщепление питательных веществ в пищеварительном тракте и т. д.
- Запасающая. В семенах растений запасаются резервные белки, которые используются при прорастании зародышем, а затем и проростком как источник азота.
- Энергетическая. После расщепления до аминокислот белки могут служить источником энергии в клетке. При полном окислении 1 г белка выделяется 17,6кДж энергии. Однако белки расходуются на энергетические нужды лишь в крайних случаях, когда исчерпаны запасы углеводов и жиров.
- Токсическая. Многие живые организмы выделяют белки-токсины, которые являются ядами для других организмов. Токсины синтезируются в организме ряда животных, грибов, растений, микроорганизмов. В свою очередь, некоторые организмы способны вырабатывать антитоксины, которые подавляют действие этих ядов.