презентация "Конус"
презентация к уроку
Предварительный просмотр:
Подписи к слайдам:
Круговым конусом называется тело ограниченное кругом – основанием конуса, и конической поверхностью, образованной отрезками, соединяющими точку, вершину конуса, со всеми точками окружности, ограничивающей основание конуса.
Конус в переводе с греческого «konos» означает «сосновая шишка». С конусом люди знакомы с глубокой древности. Много сделала для геометрии школа Платона (428–348 гг. до н. э.). Школе Платона, в частности, принадлежит: а) исследование свойств призмы, пирамиды, цилиндра и конуса; б) изучение конических сечений. Историческая справка о конусе меню
Большой трактат о конических сечениях был написан Аполлонием Пергским– учеником Евклида, который создал великий труд из 15 книг под названием «Начала». Эти книги издаются и по сей день, а в школах Англии по ним учатся до сих пор. Историческая справка о конусе меню
Элементы конуса.
Конус – это тело, которое получается, если коническую поверхность, образованную прямыми, соединяющими фиксированную точку со всеми точками какой–нибудь кривой, ограничить плоскостью.
Прямой круговой конус. Круговой конус называется прямым , если его высота попадает в центр круга.
Все образующие конуса равны между собой и составляют один угол с основанием.
Конус можно получить, вращая прямоугольный треугольник вокруг одного из катетов. При этом осью вращения будет прямая, содержащая высоту конуса. Эта прямая так и называется – осью конуса.
Сечения конуса. Если через вершину конуса провести плоскость, пересекающую основание, то в сечении получится равнобедренный треугольник.
Сечение конуса, проходящее через ось, называется осевым . В основании осевого сечения лежит диаметр – максимальная хорда, поэтому угол при вершине осевого сечения – это максимальный угол между образующими конуса. ( Угол при вершине конуса ). Сечения конуса.
Любое сечение конуса плоскостью, параллельной основанию, - это круг. Сечения конуса.
Вписанная и описанная пирамиды. Пирамидой, вписанной в конус , называется такая пирамида, основание которой – многоугольник, вписанный в основание конуса, а вершина совпадает с вершиной конуса.
Пирамида называется описанной около конуса , если ее основание – это многоугольник, описанный около основания конуса, а вершина совпадает с вершиной конуса. Вписанная и описанная пирамиды.
Плоскости боковых граней описанной пирамиды проходят через образующую конуса и касательную к окружности основания, т.е. касаются боковой поверхности конуса.
Боковая поверхность конуса. Под боковой поверхностью конуса мы будем понимать предел, к которому стремится боковая поверхность вписанной в этот конус правильной пирамиды, когда число боковых граней неограниченно увеличивается.
Теорема. Площадь боковой поверхности конуса равна половине произведения длины окружности основания на образующую. Дано: R – радиус основания конуса, l – образующая конуса. Доказать: S бок.кон. = π Rl
Доказательство:
Развертка конуса. Развертка конуса – это круговой сектор. Его можно рассматривать как развертку боковой поверхности вписанной правильной пирамиды, у которой число боковых граней бесконечно увеличивается.
Зная угол, образованный высотой и образующей конуса, можно вычислить угол сектора, полученного при развертке конуса, и наоборот.
Объем конуса. Дано: R – радиус основания Н – высота конуса Доказать: V кон. = 1/3 S осн. H Теорема. Объем конуса равен одной трети произведения площади основания на высоту.
Объемом конуса будем считать предел, к которому стремится объем вписанной в этот конус правильной пирамиды, когда число боковых граней неограниченно увеличивается. Доказательство:
Доказательство:
Конусные фигуры в быту
Конусные тела в архитектуре
Конусные тела в архитектуре
Конусные тела в архитектуре
Конусные тела в архитектуре
Конусные тела в архитектуре
Конусные тела в архитектуре
Конусные тела в архитектуре