Методическое пособие по выполнению лабораторной работы № 2 "Подключение периферийного оборудования с помощью различных интерфейсов" для МДК.02.02 Установка и конфигурирование периферийного оборудования
методическая разработка по теме
Методическое пособие создано для реализации основной профессиональной образовательной программы в соответсвии с ФГОС по специальности СПО 230113 Компьютерные системы и комплексы (базовой подготовки) в части освоения вида профессиональной деятельности: Применение микропроцессорных систем, установка и настройка периферийного оборудования и профессиональных компетенций:
1. Производить тестирование и отладку микропроцессорных систем
2. Осуществлять установку и конфигурирование персональных компьютеров и подключение периферийных устройств
3. Выявлять причины неисправности периферийного оборудования
С целью овладения указанным видом профессиональной деятельности и соответствующими профессиональными компетенциями обучающийся в ходе освоения данного МДК.02.02 должен иметь практический опыт установки и конфигурирования микропроцессорных систем и подключения периферийных устройств; выявления и устранения причин неисправностей и сбоев периферийного оборудования; уметь : устанавливать и конфигурировать персональный компьютер и подключать периферийные устройства, подготавливать компьютерную систему к работе, проводить инсталляцию и настройку компьютерных систем, выявлять причины неисправностей и сбоев, принимать меры по их устранению; знать: способы конфигурирования и установки персональных компьютеров, программную поддержку их работы, классификацию, общие принципы построения и физические основы работы периферийных устройств, способы подключения стандартных и нестандартных программных утилит, причины неисправностей и возможные сбои.
Комплекс разработанных методических пособий по выполнению лабораторных работ в соответствии с рабочей программой Профессионального Модуля 02 Применение микропроцессорных систем, установка и настройка периферийного оборудования и как ее части МДК.02.02 Установка и конфигурирование периферийного оборудования направлен на реализацию перечисленных знаний и умений.
Целью данной работы является изучение основных компонентов персонального компьютера и основных видов периферийного оборудования, способов их подключения, основных характеристик (название, тип разъема, скорость передачи данных, дополнительные свойства). Определение по внешнему виду типов разъемов и подключаемого к ним оборудования.
Скачать:
Вложение | Размер |
---|---|
laboratornaya_rabota_no2.docx | 169.37 КБ |
Предварительный просмотр:
Лабораторная работа № 2 – 4 часа
ПОДКЛЮЧЕНИЕ ПЕРИФЕРИЙНОГО ОБОРУДОВАНИЯ С ПОМОЩЬЮ РАЗЛИЧНЫХ ИНТЕРФЕЙСОВ
Цель работы: Изучение основных компонентов персонального компьютера и основных видов периферийного оборудования, способов их подключения, основных характеристик (название, тип разъема, скорость передачи данных, дополнительные свойства). Определение по внешнему виду типов разъемов и подключаемого к ним оборудования.
Задание: Осуществить подключение периферийного оборудования, используя различные интерфейсы: жесткий диск, привод на компакт-дисках, флоппи-дисковод, плату видеоадаптера, сетевую карту, звуковую карту, монитор, принтер, сканер.
Оборудование: макет системного блока, монитор, клавиатура, мышь, кабели в комплекте, периферийные устройства с различными типами разъемов (принтер, модем и другие).
- ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ
Основные разъемы для подключения периферийного оборудования и устройств приведены на рис. 1.
Рис. 1. Основные разъемы для подключения периферийного оборудования и устройств
Таблица 1
|
|
|
|
Питание системного |
|
|
|
Питание | Female | 220 В | Провод питания |
Параллельный | LTP | Разрядность – 8 | Подключение принтера, факса |
Последовательный порт |
|
|
|
Mouse | PS/2 | 6-и контактный разъем | Подключение мыши |
Keyboard | PS/2 | 6-и контактный разъем | Подключение клавиатуры |
|
| Пакетный обмен, скорость | Подключение любого оборудования, и дополнительных устройств. |
|
| Скорость обмена зависит от параметров сетевой карты | Подключение локальной или глобальной сети. |
Классификация ЭВМ. Классификация по назначению: большие ЭВМ, мини-ЭВМ, микро-ЭВМ и персональные компьютеры, которые, в свою очередь, подразделяют на массовые, деловые, портативные, развлекательные и рабочие станции. Классификация по уровню специализации: универсальные и специализированные. Классификация по типоразмерам: настольные, портативные и карманные модели. Классификация по совместимости: аппаратная совместимость, совместимость на уровне операционной системы, программная совместимость, совместимость на уровне данных.
Компьютер - это универсальная техническая система, способная четко выполнять последовательность операций определенной программы. Персональным компьютером (ПК) может пользоваться один человек без помощи обслуживающего персонала. Взаимодействие с пользователем происходит через много сред, от алфавитно-цифрового или графического диалога с помощью дисплея, клавиатуры и мышки до устройств виртуальной реальности.
Конфигурацию ПК можно изменять по мере необходимости. Но, существует понятие базовой конфигурации, которую можно считать типичной:
- системный блок;
- монитор;
- клавиатура;
- мышка.
Компьютеры выпускаются и в портативном варианте (laptop или notebook выполнение). В этом случае, системный блок, монитор и клавиатура размещены в одном корпусе: системный блок находится под клавиатурой, а монитор встроен в крышку.
Системный блок - основная составляющая ПК, в середине которой находятся важнейшие компоненты. Устройства, находящиеся в середине системного блока называют внутренними, а устройства, подсоединенные извне называют внешними. Внешние дополнительные устройства, предназначенные для ввода и вывода информации называются также периферийными.
По внешнему виду, системные блоки отличаются формой корпуса, который может быть горизонтального (desktop) или вертикального (tower) выполнение. Корпусы вертикального выполнения могут иметь разные размеры: полноразмерный (BigTower), среднеразмерный (MidiTower), малоразмерный (MiniTower). Корпусы горизонтального выполнения бывают двух форматов: узкий (Full-AT) и очень узкий (Baby-AT). Корпусы персональных компьютеров имеют разные конструкторские особенности и дополнительные элементы (элементы блокировки несанкционированного доступа, средства контроля внутренней температуры, шторки от пыли).
Корпусы поставляются вместе с блоком питания, мощность которого является одним из параметров корпуса. Для массовых моделей достаточной является мощность 500-650 Вт.
Основные узлы системного блока:
- электрические платы, руководящие работой компьютера (микропроцессор, оперативная память, контроллеры устройств и т.п.);
- накопитель на жестком диске (винчестер), предназначенный для чтения или записи информации;
- накопители (дисководы) для гибких магнитных дисков (дискет);
- приводы компакт-дисков;
- карт-ридеры.
Основной платой ПК является системная плата (MotherBoard). На ней расположенны:
- процессор - основная микросхема, выполняющая математические и логические операции;
- чипсет (микропроцессорный комплект) - набор микросхем, которые руководят работой внутренних устройств ПК и определяют основные функциональные возможности материнской платы;
- шины - набор проводников, по которым происходит обмен сигналами между внутренними устройствами компьютера;
- оперативное запоминающее устройство (ОЗУ) - набор микросхем, предназначенных для временного сохранения данных, пока включен компьютер;
- постоянное запоминающее устройство (ПЗУ) - микросхема, предназначенная для долговременного хранения данных, даже при отключенном компьютере;
- разъемы для подсоединения дополнительных устройств (слоты).
Процессор - это главная микросхема компьютера, его "мозг". Он разрешает выполнять программный код, находящийся в памяти и руководит работой всех устройств компьютера. Скорость его работы определяет быстродействие компьютера. Конструктивно, процессор - это кристалл кремния очень маленьких размеров. Процессор имеет специальные ячейки, которые называются регистрами. Именно в регистрах помещаются команды, которые выполняются процессором, а также данные, которыми оперируют команды. Работа процессора состоит в выборе из памяти в определенной последовательности команд и данных и их выполнении. На этом и базируется выполнение программ.
В ПК обязательно должен присутствовать центральный процессор (Central Processing Unit - CPU), который выполняет все основные операции. Часто ПК оснащен дополнительными сопроцесорами, ориентированными на эффективное выполнение специфических функций, такие как, математический сопроцесор для обработки числовых данных в формате с плавающей точкой, графический сопроцесор для обработки графических изображений, сопроцесор ввода/вывода для выполнения операции взаимодействия с периферийными устройствами.
Основными параметрами процессоров являются:
- тактовая частота,
- разрядность,
- рабочее напряжение,
- коэффициент внутреннего умножения тактовой частоты,
- размер кэш памяти.
Тактовая частота определяет количество элементарных операций (тактов), выполняемых процессором за единицу времени. Тактовая частота современных процессоров измеряется в МГц (1 Гц соответствует выполнению одной операции за одну секунду, 1 МГц=106 Гц) и ГГц. Чем больше тактовая частота, тем больше команд может выполнить процессор, и тем больше его производительность. Первые процессоры, которые использовались в ПК работали на частоте 4,77 МГц, сегодня рабочие частоты современных процессоров достигают отметки в 3 ГГц (1 ГГц = 103 МГц).
Разрядность процессора показывает, сколько бит данных он может принять и обработать в своих регистрах за один такт. Разрядность процессора определяется разрядностью командной шины, то есть количеством проводников в шине, по которой передаются команды. Современные процессоры семейства Intel являются 32-разрядными и даже 64-разрядными.
Рабочее напряжение процессора обеспечивается материнской платой, поэтому разным маркам процессоров отвечают разные системные платы. Рабочее напряжение процессоров не превышает 3 В. Снижение рабочего напряжения разрешает уменьшить размеры процессоров, а также уменьшить тепловыделение в процессоре, что разрешает увеличить его производительность без угрозы перегрева.
Коэффициент внутреннего умножения тактовой частоты - это коэффициент, на который следует умножить тактовую частоту системной платы, для достижения частоты процессора. Тактовые сигналы процессор получает от системной платы, которая из чисто физических причин не может работать на таких высоких частотах, как процессор. На сегодня тактовая частота материнских плат составляет 1066-1600 МГц. Для получения более высоких частот в процессоре происходит внутреннее умножение на коэффициент 4, 4.5, 5 и больше.
Кэш-память. Обмен данными внутри процессора происходит намного быстрее, чем обмен данными между процессором и оперативной памятью. Поэтому, для того чтобы уменьшить количество обращений к оперативной памяти, внутри процессора создают так называемую сверхоперативную или кэш-память. Когда процессору нужны данные, он сначала обращается к кэш-памяти, и только тогда, когда там отсутствуют нужные данные, происходит обращение к оперативной памяти. Чем больше размер кэш-памяти, тем большая вероятность, что необходимые данные находятся там. Поэтому высокопроизводительные процессоры имеют повышенные объемы кэш-памяти.
Различают кэш-память первого уровня (выполняется на одном кристалле с процессором и имеет объем порядка несколько десятков Кбайт), второго уровня (выполняется на отдельном кристалле, но в границах процессора, с объемом в сто и более Кбайт) и третьего уровня (выполняется на отдельных быстродействующих микросхемах с расположением на материнской плате и имеет объем один и больше Мбайт).
В процессе работы процессор обрабатывает данные, находящиеся в его регистрах, оперативной памяти и внешних портах процессора. Часть данных интерпретируется как собственно данные, часть данных - как адресные данные, а часть - как команды. Совокупность разнообразных команд, которые может выполнить процессор над данными, образовывает систему команд процессора. Чем больше набор команд процессора, тем сложнее его архитектура, тем длиннее запись команд в байтах и тем дольше средняя продолжительность выполнения команд.
Процессоры Intel, используемые в IBM-совместных ПК, насчитывают более тысячи команд и относятся к процессорам с расширенной системой команд - CISC-процессоров (CISC - Complex Instruction Set Computing). В противоположность CISC-процессорам разработаны процессоры архитектуры RISC с сокращенной системой команд (RISC - Reduced Instruction Set Computing). При такой архитектуре количество команд намного меньше, и каждая команда выполняется быстрее. Таким образом, программы, состоящие из простых команд выполняются намного быстрее на RISC-процессорах. Обратная сторона сокращенной системы команд состоит в том, что сложные операции приходится эмулировать далеко не всегда эффективной последовательностью более простых команд. Поэтому CISC-процессоры используются в универсальных компьютерных системах, а RISC-процессоры - в специализированных. Для ПК платформы IBM PC доминирующими являются CISC-процессоры фирмы Intel, хотя в последнее время компания AMD изготовляет процессоры семейства AMD-K6, которые имеют гибридную архитектуру (внутреннее ядро этих процессоров выполнено по RISC-архитектуре, а внешняя структура - по архитектуре CISC).
В компьютерах IBM PC используют процессоры, разработанные фирмой Intel, или совместимые с ними процессоры других фирм, относящиеся к семейству x86. Родоначальником этого семейства был 16-разрядный процессор Intel 8086. В дальнейшем выпускались процессоры Intel 80286, Intel 80386, Intel 80486 с модификациями, разные модели Intel Pentium, Pentium MMX, Pentium Pro, Pentium II, Celeron, Pentium III, Pentium IV. Среди других фирм-производителей процессоров следует отметить AMD с моделями AMD-K6, Athlon, Duron и Cyrix.
Шины
С другими устройствами, и в первую очередь с оперативной памятью, процессор связан группами проводников, которые называются шинами. Основных шин три:
- шина данных,
- адресная шина,
- командная шина.
Адресная шина. Данные, которые передаются по этой шине, трактуются как адреса ячеек оперативной памяти. Именно из этой шины процессор считывает адреса команд, которые необходимо выполнить, а также данные, с которыми оперируют команды. В современных процессорах адресная шина 32-разрядная, то есть она состоит из 32 параллельных проводников.
Шина данных. По этой шине происходит копирование данных из оперативной памяти в регистры процессора и наоборот. В ПК на базе процессоров Intel Pentium шина данных 64-разрядная. Это означает, что за один такт на обработку поступает сразу 8 байт данных.
Командная шина. По этой шине из оперативной памяти поступают команды, выполняемые процессором. Команды представлены в виде байтов. Простые команды вкладываются в один байт, но есть и такие команды, для которых нужно два, три и больше байта. Большинство современных процессоров имеют 32-разрядную командную шину, хотя существуют 64-разрядные процессоры с командной шиной.
Шины на материнской плате используются не только для связи с процессором. Все другие внутренние устройства материнской платы, а также устройства, которые подключаются к ней, взаимодействуют между собой с помощью шин. От архитектуры этих элементов во многом зависит производительность ПК в целом.
Основные шинные интерфейсы материнских плат:
ISA (Industry Standard Architecture). Разрешает связать между собой все устройства системного блока, а также обеспечивает простое подключение новых устройств через стандартные слоты. Пропускная способность составляет до 5,5 Мбайт/с. В современных компьютерах уже не используется.
EISA (Extended ISA). Расширение стандарта ISA. Пропускная способность возросла до 32 Мбайт/с. Как и стандарт ISA, этот стандарт исчерпал свои возможности.
VLB (VESA Local Bus). Интерфейс локальной шины стандарта VESA. Локальная шина соединяет процессор с оперативной памятью в обход основной шины. Она работает на большей частоте, чем основная шина, и позволяет увеличить скорость передачи данных. Позже, в локальную шину "врезали" интерфейс для подключения видеоадаптера, который требует повышенной пропускной способности, что и привело к появлению стандарта VLB. Пропускная способность - до 130 Мбайт/с, рабочая тактовая частота - 50 МГц, но она зависит от количества устройств, подсоединенных к шине, что является главным недостатком интерфейса VLB.
PCI (Peripherial Component Interconnect). Стандарт подключения внешних устройств, введенный в ПК на базе процессора Pentium. По своей сути, это интерфейс локальной шины с разъемами для подсоединения внешних компонентов. Данный интерфейс поддерживает частоту шины до 66 МГц и обеспечивает быстродействие до 264 Мбайт/с независимо от количества подсоединенных устройств. Важным нововведением этого стандарта является поддержка механизма plug-and-play, суть которого состоит в том, что после физического подключения внешнего устройства к разъему шины PCI происходит автоматическая конфигурация этого устройства.
FSB (Front Side Bus). Начиная с процессора Pentium Pro для связи с оперативной памятью используется специальная шина FSB. Эта шина работает на частоте 100-133 МГц и имеет пропускную способность до 800 Мбайт/с. Частота шины FSB является основным параметром, именно она указывается в спецификации системной платы. За шиной PCI осталась лишь функция подключения новых внешних устройств.
AGP (Advanced Graphic Port). Специальный шинный интерфейс для подключения видеоадаптеров. Разработан в связи с тем, что параметры шины PCI не отвечают требованиям видеоадаптеров по быстродействию. Частота этой шины - 33 или 66 МГц, пропускная способность до 2,1 Гбайт/с.
USB (Universal Serial Bus). Стандарт универсальной последовательной шины определяет новый способ взаимодействия компьютера с периферийным оборудованием. Он разрешает подключать до 127 разных устройств с последовательным интерфейсом, причем устройства могут подсоединяться цепочкой. Производительность шины USB составляет: 1,55 Мбит/с – USB1, 12 Мбит/с - USB2, 480 Мбит/с - USB3, 4,8 Гбит/с - USB4. Среди преимуществ этого стандарта следует отметить возможность подключать и отключать устройства в "горячем режиме" (то есть без перезагрузки компьютера), а также возможность объединения нескольких компьютеров в простую сеть без использования специального аппаратного и программного обеспечения.
Внутренняя память
Под внутренней памятью понимают все виды запоминающих устройств, расположенные на материнской плате. К ним относятся оперативная память, постоянная память и энергонезависимая память.
Оперативная память RAM (Random Access Memory)
Память RAM - это массив кристаллических ячеек, способных сохранять данные. Она используется для оперативного обмена информацией (командами и данными) между процессором, внешней памятью и периферийными системами. Из нее процессор берет программы и данные для обработки, в нее записываются полученные результаты. Название "оперативная" происходит от того, что она работает очень быстро и процессору не нужно ждать при считывании данных из памяти или записи. Однако, данные сохраняются лишь временно при включенном компьютере, иначе они исчезают.
По физическому принципу действия различают динамическую память DRAM и статическую память SRAM. Ячейки динамической памяти можно представить в виде микроконденсаторов, способных накапливать электрический заряд. Недостатки памяти DRAM: медленнее происходит запись и чтение данных, требует постоянной подзарядки. Преимущества: простота реализации и низкая стоимость.
Ячейки статической памяти можно представить как электронные микроэлементы - триггеры, состоящие из транзисторов. В триггере сохраняется не заряд, а состояние (включенный/выключенный). Преимущества памяти SRAM: значительно большее быстродействие. Недостатки: технологически более сложный процесс изготовления, и соответственно, большая стоимость.
Микросхемы динамической памяти используются как основная оперативная память, а микросхемы статической - для кэш-памяти.
Каждая ячейка памяти имеет свой адрес, выраженный числом. В современных ПК на базе процессоров Intel Pentuim используется 32-разрядная адресация. Это означает, что всего независимых адресов есть 232, то есть возможное адресное пространство составляет 4,3 Гбайт.
Оперативная память в компьютере размещена на стандартных панельках, которые называются модулями. Модули оперативной памяти вставляют в соответствующие разъемы на системной плате. Конструктивно модули памяти имеют выполнение двурядное (DIMM – модули.
На сегодняшний день в мире наиболее предпочтительным типом памяти являются модули памяти DDR (double data rate). Они различаются по времени выпуска и конечно же техническими параметрами.
- DDR или DDR SDRAM (в переводе с англ. Double Data Rate Synchronous Dynamic Random Access Memory - синхронная динамическая память с произвольным доступом и удвоенной скоростью передачи данных). Модули данного типа имеют на планке 184 контакта, питаются напряжением в 2,5 В и имеют тактовую частоту работы до 400 мегагерц. Данный тип оперативной памяти уже морально устарел и используется только в стареньких материнских платах.
- DDR2 - широко распространенный на данное время тип памяти. Имеет на печатной плате 240 контактов (по 120 на каждой стороне). Потребление в отличие от DDR1 снижено до 1,8 В. Тактовая частота колеблется от 400 МГц до 800 МГц.
- DDR3 - лидер по производительности на момент написания данной статьи. Распространен не менее чем DDR2 и потребляет напряжение на 30-40% меньше в отличии от своего предшественника (1,5 В). Имеет тактовую частоту до 1800 МГц.
- DDR4 - новый, супер современный тип оперативной памяти, опережающий своих собратьев как по производительности (тактовой частоте) так и потреблением напряжения (а значит отличающийся меньшим тепловыделением). Анонсируется поддержка частот от 2133 до 4266 Мгц. На данный момент в массовое производство данные модули ещё не поступили. Официально, модули четвертого поколения, работающие в режиме DDR4-2133 при напряжении 1,2 В были представлены на выставке CES, компанией Samsung 04 января 2011 года.
Основные характеристики модулей оперативной памяти:
- объем памяти,
- тактовая частота,
- пропускная способность.
Всего несколько лет назад оперативная память объёмом в 256-512 МБ удовлетворяла все нужды даже крутых геймерских компьютеров. В настоящее же время для нормального функционирования отдельно лишь операционной системы Windows 7 требуется 1 Гб памяти, не говоря уже о приложениях и играх. Лишней оперативная память никогда не будет, но известно, что 32-х разрядная Windows использует лишь 3,25 Гб ОЗУ, если даже в системе будет 8 Гб ОЗУ.
Тактовая частота. Это довольно таки важный технический параметр оперативной памяти. Но тактовая частота есть и у системной платы и важно знать рабочую частоту шины этой платы, так как если имеется, например модуль ОЗУ DDR3-1800, а слот (разъём) системной платы поддерживает максимальную тактовую частоту DDR3-1600, то и модуль оперативной памяти в результате будет работать на тактовой частоте в 1600 МГц. При этом возможны всяческие сбои, ошибки в работе системы и синие экраны смерти.
Примечание: Частота шины памяти и частота процессора - совершенно разные понятия.
Из приведенных таблиц можно понять, что частота шины, умноженная на 2, дает эффективную частоту памяти (указанную в графе "чип"), т.е. выдает скорость передачи данных. Об этом же говорит и название DDR (Double Data Rate) - что означает удвоенная скорость передачи данных.
Например, расшифровка в названии модуля оперативной памяти - Kingston/PC2-9600/DDR3(DIMM)/2Gb/1200MHz, где:
Kingston - производитель;
- PC2-9600 - название модуля и его пропускная способность;
- DDR3(DIMM) - тип памяти (форм фактор в котором выполнен модуль);
- 2Gb - объем модуля;
- 1200MHz - эффективная частота, 1200 МГц.
Пропускная способность - характеристика памяти, от которой зависит производительность системы. Выражается она как произведение частоты системной шины на объём данных передаваемых за один такт. Пропускная способность (пиковый показатель скорости передачи данных) – это комплексный показатель возможности RAM, в нем учитывается частота передачи данных, разрядность шины и количество каналов памяти. Частота указывает потенциал шины памяти за такт – при большей частоте можно передать больше данных.
Пиковый показатель вычисляется по формуле: B = f * c, где:
В - пропускная способность, f - частота передачи, с - разрядность шины. Если используются два канала для передачи данных, все полученное умножается на 2. Чтобы получить цифру в байтах/c, необходимо полученный результат поделить на 8 (т.к. в 1 байте 8 бит).
Для лучшей производительности пропускная способность шины оперативной памяти и пропускная способность шины процессора должны совпадать. К примеру, для процессора Intel Core 2 Duo E6850 с системной шиной 1333 MHz и пропускной способностью 10600 Mb/s, можно установить два модуля с пропускной способностью 5300 Mb/s каждый (PC2-5300), в сумме они будут иметь пропускную способность системной шины (FSB) равную 10600 Mb/s.
Частоту шины и пропускную способность обозначают следующим образом: "DDR2-XXXX" и "PC2-YYYY". Здесь "XXXX" обозначает эффективную частоту памяти, а "YYYY" пиковую пропускную способность.
Тайминги (или латентность) - это временные задержки сигнала, которые, в технической характеристике ОЗУ записываются в виде "2-2-2" или "3-3-3" и т.д. Каждая цифра здесь выражает параметр. По порядку это всегда "CAS Latency" (время рабочего цикла), "RAS to CAS Delay" (время полного доступа) и "RAS Precharge Time" (время предварительного заряда).
Постоянная память ROM (Read Only Memory)
В момент включения компьютера в его оперативной памяти отсутствуют любые данные, поскольку оперативная память не может сохранять данные при отключенном компьютере. Но процессору необходимы команды, в том числе и сразу после включения. Поэтому процессор обращается по специальному стартовому адресу, который ему всегда известен, за своей первой командой. Этот адрес указывает на память, которую принято называть постоянной памятью ROM или постоянным запоминающим устройством (ПЗУ). Микросхема ПЗУ способна продолжительное время сохранять информацию, даже при отключенном компьютере. Говорят, что программы, которые находятся в ПЗУ, "зашиты" в ней - они записываются туда на этапе изготовления микросхемы. Комплект программ, находящийся в ПЗУ образовывает базовую систему ввода/вывода BIOS (Basic Input Output System).
Основное назначение этих программ состоит в том, чтобы проверить состав и трудоспособность системы и обеспечить взаимодействие с клавиатурой, монитором, жесткими и гибкими дисками.
Энергонезависимая память CMOS
Работа таких стандартных устройств, как клавиатура, может обслуживаться программами BIOS, но такими средствами невозможно обеспечить роботу со всеми возможными устройствами (в связи с их огромным разнообразием и наличием большого количества разных параметров). Но для своей работы программы BIOS требуют всю информацию о текущей конфигурации системы. По очевидной причине эту информацию нельзя сохранять ни в оперативной памяти, ни в постоянной. Специально для этих целей на материнской плате есть микросхема энергонезависимой памяти, которая называется CMOS. От оперативной памяти она отличается тем, что ее содержимое не исчезает при отключении компьютера, а от постоянной памяти она отличается тем, что данные можно заносить туда и изменять самостоятельно, в соответствии с тем, какое оборудование входит в состав системы.
Микросхема памяти CMOS постоянно питается от небольшой батарейки, расположенной на материнской плате. В этой памяти сохраняются данные про гибкие и жесткие диски, процессоры и т.д. Тот факт, что компьютер четко отслеживает дату и время, также связан с тем, что эта информация постоянно хранится (и обновляется) в памяти CMOS. Таким образом, программы BIOS считывают данные о составе компьютерной системы из микросхемы CMOS, после чего они могут осуществлять обращение к жесткому диску и другим устройствам.
В качестве основного устройства вывода информации на ПЭВМ используется монитор, а стандартным программным обеспечением является драйвер монитора.
К устройствам ввода и вывода анимационной и акустической информации относятся видео и звуковые адаптеры (карты). К их параметрам относятся: объем собственной оперативной памяти, частота, количество входных и выходных каналов и способы связи с внешними устройствами.
Мультимедиа — это одновременное использование различных форм представления информации и ее обработки в едином объекте-контейнере. Например, в одном объекте-контейнере может содержаться текстовая, аудио, графическая и видео информация, а также, возможно, способ интерактивного взаимодействия с ней.
Печатающие устройства. Матричные принтеры – простейшие печатающие устройства. Данные выводятся на бумагу в виде оттиска, образующегося при ударе цилиндрических стержней («иголок») через красящую ленту. Качество печати напрямую зависит от количества иголок в печатающей головке. Лазерные принтеры обеспечивают высокое качество печати. Итоговое изображение формируется из отдельных точек. Светодиодные принтеры принципом действия похожи на лазерные, но источником света в данном случае является не лазерная головка, а линейка светодиодов. Струйные принтеры – изображение на бумаге формируется из пятен, образующихся при попадании капель красителя на бумагу. Выброс микрокапель красителя происходит под давлением, которое развивается в печатающей головке за счет парообразования.
Оптические диски и CD и DVD. Оптический диск — собирательное название для носителей информации, выполненных в виде дисков, запись на которые ведётся с помощью оптического излучения. Диск обычно плоский, его основа сделана из поликарбоната, на который нанесен специальный слой, который и служит для хранения информации.
Коммуникационные устройства (сетевая плата, модем). Модем – устройство, предназначенное для обмена информацией между удаленными компьютерами по каналам связи. При этом под каналом связи понимают физические линии (проводные, оптоволоконные, кабельные, радиочастотные), способ их использования (коммутируемые и выделенные) и способ передачи данных (цифровые или аналоговые сигналы).
Сетевая плата (сетевая карта, сетевой адаптер, Ethernet-адаптер) — периферийное устройство, позволяющее компьютеру взаимодействовать с другими устройствами сети. Стандартом на современные системные платы предусмотрены встроенные сетевые и звуковые адаптеры, а следовательно на задней панели корпуса системного блока располагаются разъемы RG-45 и входы/выходы звукового адаптера.
- ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ
- Изучить основные теоретические положения, сделав необходимые выписки в конспект.
- Провести подключение периферийного оборудования, используя различные интерфейсы.
КОНТРОЛЬНЫЕ ВОПРОСЫ
- Что такое системная плата? Какие компоненты персонального компьютера на ней находятся?
- В чем состоит выполнение программ центральным процессором?
- Какие основные параметры процессора? Что характеризует тактовая частота и в каких единицах она измеряется?
- Что такое кэш-память? Уровни кэш-памяти?
- Для чего предназначены шины? Какие есть типы шин?
- Какие шинные интерфейсы материнской платы вы знаете?
- Чем отличается оперативная память от постоянной памяти?
- Что такое RISC-процессоры? В чем состоит их отличие от CISC-процессоров?
- В какой памяти сохраняются программы BIOS?
- Какая информация сохраняется в энергонезависимой памяти?
- Какие вы знаете типы оперативной памяти? Какая между ними разница?
По теме: методические разработки, презентации и конспекты
МЕТОДИЧЕСКОЕ ПОСОБИЕ для выполнения лабораторных работ по дисциплине «Компьютерная графика» для специальности 140102.51 «Теплоснабжение и теплотехническое оборудование»
В результате освоения дисциплины «Компьютерная графика» студент должен уметь работать с чертежом на персональном компьютере, знать основные приемы построения и редактирования чертежей в программе «Ком...
Методическое пособие по выполнению лабораторной работы №1 "Тестирование LPT и COM портов с помощью программы DEBUG" для МДК.02.02 Установка и конфигурирование периферийного оборудования
Методическое пособие создано для реализации основной профессиональной образовательной программы в соответсвии с ФГОС по специальности СПО 230113 Компьютерные системы и комплексы (базовой подготовки)...
Методическое пособие по выполнению лабораторной работы № 3 "Подключение и работа с цифровой и видеокамерой" для МДК.02.02 Установка и конфигурирование периферийного оборудования
Методическое пособие создано для реализации основной профессиональной образовательной программы в соответсвии с ФГОС по специальности СПО 230113 Компьютерные системы и комплексы (базовой подготов...
Методическое пособие по выполнению лабораторной работы № 4 "Изучение устройства накопителя на жестких магнитных дисках с сервоприводом головок записи/считывания" для МДК.02.02 Установка и конфигурирование периферийного оборудования
Методическое пособие создано для реализации основной профессиональной образовательной программы в соответсвии с ФГОС по специальности СПО 230113 Компьютерные системы и комплексы (базовой подготов...
Методическое пособие по выполнению лабораторной работы № 6 "Изучение работы программы по организации разделов жесткого диска - FDISK. Изучение работы программы логического форматирования жесткого диска - FORMAT" для МДК.02.02
Методическое пособие создано для реализации основной профессиональной образовательной программы в соответствии с ФГОС по специальности СПО 230113 Компьютерные системы и комплексы (базовой подгото...
Методическое пособие по выполнению лабораторной работы № 6 "Изучение работы программы по организации разделов жесткого диска - FDISK. Изучение работы программы логического форматирования жесткого диска - FORMAT" для МДК.02.02
Методическое пособие создано для реализации основной профессиональной образовательной программы в соответствии с ФГОС по специальности СПО 230113 Компьютерные системы и комплексы (базовой подгото...
Методическое пособие по выполнению лабораторной работы № 7 "Изучение современного программного обеспечения по подготовке к работе и восстановлению работоспособности жесткого диска" для МДК.02.02 Установка и конфигурирование периферийного оборудования
Методическое пособие создано для реализации основной профессиональной образовательной программы в соответствии с ФГОС по специальности СПО 230113 Компьютерные системы и комплексы (базовой подгото...