Metallurgy
методическая разработка

Методическое пособие "Металлургия"по дисциплине "Иностранный язык" содержит тексты профессиональной направленности и задания к ним. Вокабуляр к каждому тексту помогает в понимании содержания текстов, а задания служат для отработки изучаемого материала.

Цель пособия - помочь студентам овладеть навыками чтения, понимания и перевода научно-технической литературы, а также для повторения и закрепления основных грамматических и лексических явлений.

Пособие предназначено для аудиторной и самостоятельной работы студентов специальности «Металлургия цветных металлов» очной и заочной форм обучения.

Скачать:

ВложениеРазмер
Файл Metallurgy68.28 КБ

Предварительный просмотр:

МИНИСТЕРСТВО ОБРАЗОВАНИЯ КРАСНОЯРСКОГО КРАЯ

КГБПОУ

«КРАСНОЯРСКИЙ ИНДУСТРИАЛЬНО-МЕТАЛЛУРГИЧЕСКИЙ ТЕХНИКУМ»

МЕТОДИЧЕСКОЕ ПОСОБИЕ

METALLURGY. МЕТАЛЛУРГИЯ

по дисциплине     Иностранный язык
                        
        для студентов 3 курсов


Разработал:

преподаватель

Ровенская М.В.

Красноярск

2020 г


Методическое пособие содержит 12 текстов, только 2 из которых являются адаптированными. Вокабуляр к каждому тексту помогает в понимании содержания текстов, а задания служат для отработки изучаемого материала.

 Цель пособия - помочь студентам овладеть навыками чтения, понимания и перевода научно-технической литературы, а также для повторения и закрепления основных грамматических и лексических явлений.

Пособие предназначено для аудиторной и самостоятельной работы студентов специальности «Металлургия цветных металлов» очной и заочной форм обучения.


Text 1

Non-ferrous metals

specify 1) задавать; устанавливать; определять 2) конкретизировать; детализировать ferrous alloys - чёрный сплав, сплав на железной основе

lithium ['lɪθɪəm] - литий

osmium ['ɔzmɪəm] - осмий

mercury ['mɜːkj(ə)rɪˌ 'mɜːkjurɪ] 1) ртуть 2) ртутный столб, температура или давление

tungsten ['tʌŋstən] - вольфрам

melting point - точка плавления

liquefy ['lɪkwɪfaɪ] 1) а) плавить, растапливать б) сжижать to liquefy gas — сжижать газ 2) таять, плавиться

abundance [ə'bʌndən(t)s] - относительное содержание, распространённость

magnesium [mæg'niːzɪəm] - магний

dozen I ['dʌz(ə)n] - дюжина

minor ['maɪnə] - незначительный, несущественный, второстепенный

readily formable – легко формуемый

tensile strength - предел прочности на разрыв, предел прочности на растяжение, предел прочности при растяжении, прочность на разрыв, прочность на растяжение, прочность при растяжении, временное сопротивление на растяжение, сопротивление растяжению

psi - pound per square inch - фунт на квадратный дюйм (0,07 кг/см2)

elevated temperature - повышенная температура

Although ferrous alloys are specified for more engineering applications than all non-ferrous metals combined, the large family of non-ferrous metals offers a wider variety of characteristics and mechanical properties. For example, the lightest metal is lithium, 0.53 g/cm3, the heaviest, osmium, weighs 22.5 g/cm3 — nearly twice the weight of lead. Mercury melts at around —38°F, and tungsten, the metal with the highest melting point, liquefies at 6,170°F.

Availability, abundance, and the cost of converting the metal into useful forms — all play important parts in selecting a non-ferrous metal. One ton of earth contains about 81,000 g of the most abundant metal of land, aluminium. One ton of sea water, on the other hand, contains more magnesium than any other metal (about 1,272 g). All sources combined, magnesium is the most abundant metal on earth. But because magnesium difficult to convert to a useful metal, it may cost several times that of the least expensive and most easily produced metal, iron billet.

Although nearly 80% of all elements are called "metals", only about two dozen of these are used as structural engineering materials. Of the balance, however, many are used as coatings, in electronic devices, as nuclear materials, and as minor constituents in other systems.

Aluminium

Aluminium is lightweight, strong, and readily formable. Aluminium and its alloys, numbering in the hundreds, are available in all common commercial forms. Because of their high thermal conductivity, many aluminium alloys are used as electrical conductors.

Commercially pure aluminium has a tensile strength of about 13,000 psi. Cold-working the metal approximately doubles its strength. For greater strength aluminium is alloyed with other elements such as manganese, silicon, copper, magnesium or zinc. Some alloys are further strengthened and hardened by heat treatments. Most aluminium alloys lose strength at elevated temperatures, although some retain significant strength to 500°F.

Task 1

Answer the following questions:

1. Which of the non-ferrous metals is the most abundant metal of the Earth?

2. Which is the most abundant metal of land?

3. What factors define the selection of materials?

4. Why is magnesium so expensive?

5. Name the properties of pure aluminium.

6. How are the properties of pure aluminium improved?

Task 2

Find in the text:

  1. the most abundant metal of land
  2. minor constituents
  3. contains more magnesium
  4. high thermal conductivity
  5. approximately doubles its strength
  6. to convert to a useful metal
  7. most easily produced metal
  8. elevated temperatures
  9. the large family of non-ferrous metals
  10. a tensile strength

  1. Почти в два раза тяжелее
  2. Объединив все источники
  3. Самый тяжелый металл
  4. Сохранять существенную прочность
  5. Конструкционные технические материалы
  6. Ртуть плавится при почти …
  7. Холодная обработка металла
  8. Самый распространенный металл на земле
  9. Доступность, распространенность и стоимость
  10. Прочный и легко формуемый

Text 2

Aluminium alloys

bearing properties - свойства нести нагрузку

ZA = zinc + aluminium

shortcoming = drawback - недостаток

protective finish - защитное покрытие

environmental problems - проблемы окружающей среды

machining - обработка (на станках)

predominant [prɪ'dɔmɪnənt] - преобладающий, доминирующий

substantial [səb'stæn(t)ʃ(ə)l]  - а) основной, главный б) важный, значительный, существенный

cadmium ['kædmɪəm] - кадмий

cerium ['sɪərɪəm] - церий

beneficial [ˌbenɪ'fɪʃ(ə)l] - благотворный, выгодный, полезный, прибыльный 

contribute [kən'trɪbjuːt ], ['kɔntrɪbjuːt] 1) содействовать, способствовать

refinement [rɪ'faɪnmənt] - очищение, очистка (от примесей), рафинирование (спирта, металла), рафинация (масла, сахара)

market penetration- проникновение на рынок, внедрение в рынок

detract [dɪ'trækt] - отнимать; вычитать, уменьшать

inherent [ɪn'her(ə)nt] - обязательно присущий, неотъемлемый

moderately ['mɔd(ə)rətlɪ] -  умеренно, сдержанно, средне

distinct [dɪ'stɪŋkt] 1) особый; отличный, несовпадающий 2) чёткий, ясно выраженный, ясный

Pure aluminium has good corrosion resistance and working and forming properties but poor machining characteristics and low mechanical strength. By adding other elements to aluminium, its strength and machining characteristics can be improved. Such a combination of two or more elements, at least one of which is metallic, is called an alloy and the predominant metal in the system is referred to as the base metal.

Silicon, copper, zinc and magnesium are common alloying elements and are often added to aluminium in substantial proportions. Iron, manganese, nickel, chromium, titanium, antimony, cadmium, cerium, lithium, beryllium and molybdenum are also added in smaller proportions with various beneficial effects.

Titanium, tungsten, cerium and molybdenum all contribute to grain refinement of cast aluminium. Manganese and antimony are often added to improve corrosion resistance. Cobalt and nickel affect strength and workability while cadmium and tin increase hardness in heat treatable alloys.

The market penetration of ZA alloys has been aided by the fact that traditional high volume foundry metals have significant shortcomings that detract from their inherent advantages:

cast iron has high energy and machining costs, protective finishes are nearly always required and there are industry environmental problems;

bronze has high material and energy costs and the environmental problem of lead for many important alloys;

aluminium has limitations in strength, bearing properties and finishing along with moderately high energy costs. Of course, each of these classic materials does have distinct advantages in given applications.

In contrast, the zinc casting alloys have advantages that are highly attractive to foundries:

excellent casting properties;

low energy consumption;

pollution free melting and casting;

excellent machinability;

lower material cost and density than bronze.

Task 1

Match the following word combinations:

  1. термически обрабатываемые сплавы
  2. основной металл
  3. энергопотребление
  4. хорошая коррозионная стойкость
  5. защитное покрытие
  6. благоприятное воздействие
  7. иметь явные преимущества
  8. низкая механическая прочность
  9. значительные количества
  10. стоимость материала и плотность
  11. значительные недостатки
  12. свойства обработки и формования
  13. высокие материальные и энергетические затраты
  14. влиять на прочность и обрабатываемость
  15. преобладающий металл
  1. protective finishes
  2. material cost and density
  3. significant shortcomings
  4. the base metal
  5. working and forming properties
  6. energy consumption
  7. heat treatable alloys
  8. beneficial effects
  9. the predominant metal
  10. have distinct advantages
  11. good corrosion resistance
  12. low mechanical strength
  13. affect strength and workability
  14. high energy and machining costs
  15. substantial proportions

Task 2

Translate into Russian:

  1. casting properties
  2. added to aluminium
  3. machinability
  4. industry environmental problems
  5. one of which is metallic
  6. pure aluminium
  7. limitations in strength
  8. poor machining
  9. grain refinement
  10. high energy and machining costs
  11. pollution free
  12. added in smaller proportions
  13. can be improved
  14. many important alloys
  15. given applications

Text 3

Aluminium

Aluminium, which is sometimes called aluminum, is the typical metal in the third group in the periodic classification of the elements. Aluminium is the most abundant of the metals and the most widely distributed. It is found in field-spars, micas, kaolin, clay, bauxite, cryolite, alunite, corundum and certain gems. Compounds of aluminium have been known for many years and they were recognized as being derived from a metal that had not been isolated.

Aluminium has a very low density, 2.7; it is used in construction when a metal is required and weight is an important consideration. It is ductile, malleable, and can be rolled. Its tensile strength is low in comparison with that of iron; it cannot be machined and polished readily and does not yield good castings. These defects can be overcome by alloying it with other metals. Alloys of copper and aluminium which contain from 5 to 10 per cent of the latter are called aluminium bronzes. They have a fine yellow colour resembling gold and are used in making imitation jewelry and statuary.

On account of its low electrical resistance, aluminium is used in certain cases in wires and cables as conductors.

 Task 1

Read the text, find unknown words, write them out and translate into Russian.

Task 2

Translate this text into Russian and ask 7 questions to the text in English.


Text 4

Aluminium production: introduction

Aluminium can be produced by using anodes and cathodes in the aluminium smelter.

The main components of anodes are petroleum coke, a product from the distillation of oil, and coal tar pitch, a distillation product extracted from the tar that is obtained in coking plants. A part of the anode material, the so-called anode butts, is returned by the aluminium smelters to be reused as raw material. Petroleum coke and anode butts are crushed, dried if necessary, graded, ground, heated and mixed with an exact amount of pitch and finally kneaded. An optimal composition is yet another prerequisite for good anode quality. Depending on the anode format the compound will be moulded to a 'green anode' either in a press or in a vibrating machine. After forming, the anodes are baked at approx. 1150°C to carbonize the pitch binder and eliminate the volatile parts of the pitch. After cleaning, inspecting and packaging, the anodes are ready for delivery. Anodes can be produced in all shapes and sizes.

Aluminium electrolysis

General chemical reaction

2 Al2O3 (dissolved) + 3 C (s) ? 4 Al (liquid) + 3 CO2 (gas)

Cathode reaction:

4 Al3+ (bath) + 12 e-? 4 Al (liquid)

or 4 AlF -4 (bath) + 3 e-? Al (liquid) + 4F -

Anode reaction:

3 C (solid anode) + 6 O2-? 3 CO2 (gas) + 12 e-

Task 1

Read the text, find unknown words, write them out and translate into Russian.

Task 2

Translate this text into Russian.


Text 5

The interaction of design and operation for optimized aluminum reduction

Introduction

reduction process - восстановительный процесс

physical design - топологический проект (ис)

encompass [ɪn'kʌmpəs ], [en'kʌmpəs] - выполнять, осуществлять; охватывать

cell - 1) гибкий производственный модуль, гпм 2) гибкая производственная ячейка, гпя – электролизер, ванна

retrofit ['retrəufɪt] - 1) модернизация (модификация) 2) модернизировать; модифицировать (модель)

the Hall-Heroult aluminum process – процесс производства алюминия Холла-Эру 1886

labor productivity - производительность труда

smelter - плавильная печь

smelt [smelt] - 1. 1) плавка (чугуна, электростали, цветных металлов, ферросплавов) 2) расплавленный металл, расплав 2. подвергать плавке; расплавлять, выплавлять to smelt metal — плавить металл

current efficiency - коэффициент использования тока, кпд по току

net carbon consumption - чистое потребление углерода

bath ratio - коэффициент ванны

puncher - пробойник;  фурмовщик

feeder - подающее устройство; механизм подачи; привод подачи; питатель

anode ['ænəud] - анод

preeminent [,pri:'emɪnənt] - превосходящий других, выдающийся, исключительный

utilize ['ju:tɪlaɪz] - утилизировать, использовать, расходовать, употреблять

cathode ['kæθəud] - катод

cavity - 1) углубление; выемка; полость 2) пустота

alumina [ə'lu:mɪnə] - окись алюминия; глинозём

reactivity - 1) реактивность 2) химическая активность, реакционная способность

variable ['vɛərɪəbl] - переменная (величина); что-л. изменчивое (изменяющийся фактор, черта, элемент)

busbar ['bəs,ba:] - (электрическая) шина; шинопровод; сборные шины; ошиновка, система шин

The aluminum reduction process may be thought of as having three facets: structure, which encompasses the physical design layout and construction of the plant; operating systems, which deal with the methods for carrying out the various operations; and processes, which encompass the workings of the reduction process. Unless all three are properly balanced during the design and retrofit processes, suboptimal results will be obtained.

Improving the Hall-Heroult aluminum process has different implications, depending on whether the work is performed on a new cell design or to upgrade an existing cell. In either case, the goals are lower unit material and energy usage and improved labor productivity. For existing cells, with their limits imposed by the original installation, the problems are unique to each smelter. Several areas of cell development are being addressed, and retrofitted cells are of particular interest.

The modern reduction cell operates at a current efficiency of 90-95% and an energy efficiency of 13-14.5 kWh/kg, with net carbon consumption ranging from 395 to 440kg/t. Most cells are operated at current densities of approximately 0.8 A/cm2 with bath ratios between 1.10 and 1.20 in conjunction with point/puncher feeders. In all cells exhibiting excellent performance, the anode setting operation and metal level control are a focus of preeminent attention. The more efficient cells utilize relatively sophisticated computer systems to precisely handle anode effects, feed and voltage. An essential element of the process is a well-designed, energy-efficient cathode capable of over 2,000 days of operating life with a cavity depth sufficient for the proper protection of the upper anode surface with alumina or crushed bath. Low reactivity anodes with minimal tendency to produce dust are essential to operational stability.

For designers of new cells, two further variables available for modification are amperage level and busbar configuration. New cells being installed today range from the 150 kA Kaiser cell to the 300 kA Aluminium Pechiney cell.

Task 1

Find in the text:

  1. конструкция завода
  2. процессы разработки и модернизации
  3. процесс производства алюминия
  4. новый проект электролизера
  5. сократить количество материалов и энергозатраты
  6. первоначальная установка
  7. энергетическая эффективность
  8. плотность тока
  9. операция установки анода
  10. контроль уровня металла
  11. центр исключительного внимания
  12. точно управлять
  13. анодные эффекты
  14. энергетически-эффективный катод
  15. срок эксплуатации
  16. доступный для модификации
  17. уровень силы тока
  18. конфигурация электрической шины (ошиновки)


Text 6

Cathode design and operations

Magnetic considerations

magnetic considerations магнитные возможности

pad подушка; подкладка; прокладка; пластина, опорная пластина, опора; башмак || подкладывать; подпирать the metal pad – слой металла

uneven 1) неровный; шероховатый (о поверхности) 2) непрямой; непараллельный; неправильной формы

gravity тяжесть; сила тяжести; тяготение

circumstances 1) обстоятельства, условия, положение дел 2) подробности, детали

to exacerbate[ɪg'zæsəbeɪt]  обострять, осложнять, углублять, усиливать (кризис, недовольство)

disturbance 1) помеха или помехи 2) нарушение (нормальной работы, работоспособности); повреждение

consequent ['kɔn(t)sɪkwənt] 1) являющийся результатом, следствием чего-л. 2) последовательный 3) логичный, являющийся логически последовательным

distorted [dɪ'stɔ:tɪd] 1) кривой, перекошенный, искажённый, искривлённый 2) деформированный; покоробленный

stirring ['stɜ:rɪŋ] 1) активный 2) перемешивающий; вихревой

sludge [slʌʤ] отстой; осадок; шлам

electrolyte [ɪ'lektrəlaɪt] электролит

vortices от vortex ['vɔ:teks] водоворот; вихрь; воронка

eddy  вихрь, вихревое движение, завихрение

to call for требовать, нуждаться

dissolution [,dɪsə'lu:ʃ(ə)n] 1) растворение; разжижение 2) расплавление 3) разложение (на составные части)

to foster ['fɔstə] поощрять, побуждать, стимулировать; одобрять

lining ['laɪnɪŋ] обкладка; обшивка; футеровка

model(l)ing ['mɔd(ə)lɪŋ]  моделирование || модельный ,макетный , образцовый; эталонный; шаблонный , примерный; типовой

quiescent [kwɪ'es(ə)nt ]; [kwaɪ'es(ə)nt] ; 1) находящийся в покое, неподвижный quiescent load — статическая, постоянная нагрузка

dredging [ dreʤ] 1) драгирование 2) дноуглубительные работы

debris ['deɪbri:] обрезки; обломки; осколки

insight into понимание, догадка, (внезапное) озарение, проникновение в суть

attendant consequences сопутствующие последствия

criteria [kraɪ'tɪərɪə] от criterion [kraɪ'tɪərɪən] критерий, мерило, признак

to elaborate [ɪ'læb(ə)reɪt] 1)  детально разрабатывать (тему, вопрос) ; конкретизировать, развивать, уточнять 2) производить; вырабатывать, преобразовывать

prohibitive [prə'hɪbətɪv] 1) запретительный 2) а) запрещающий, препятствующий б) чрезмерно, непомерно высокий (о цене, издержках и т.п.)

                 

The magnetic environment of the reduction cell affects the production of aluminum in three significant ways. The first is the magnetic field's effect on the metal pad topography. An uneven metal pad indicates a poorly designed equilibrium between gravity and the cell's electromagnetic forces. Under such circumstances, the anode changing operation exacerbates cell disturbance. This disturbance takes a certain amount of time to settle down, resulting in changes to the anode current distribution with the consequent potential for temporary current inefficiency. A further consequence of the distorted metal pad is the inability to maintain the interelectrode spacing at the optimum distance, thereby wasting voltage.

The second impact is the effect on metal pad movement. The metal pad velocity is an important consequence of the magnetic environment because of the contribution to the stirring action in the cell, which helps to keep sludge in contact with bath and ensures even distribution of the heat and alumina throughout the electrolyte. Too high a velocity can result in waves and splashing, which can cause shorting of the anodes, again contributing to current inefficiency and the inability to optimally reduce the interelectrode space.

Vortices and eddies in the metal pad are the third major impact of the magnetic environment. These will promote localized stirring and the tendency to mix the metal pad and electrolyte bath, especially when the operational strategy calls for a bath chemistry with a density close to that of the metal pool. This results in cells with a tendency to voltage instability. It also promotes metal redissolution and reoxidation. The erosive effects of the eddies and vortices can foster localized erosion in the cathode lining and, thus, reduce cathode life.

With the increased capability of available modeling tools, the negative impact of magnetic effects on the metal pad may be largely eliminated. The resulting quiescent metal pad may have an impact on operations, requiring anode setting operations including dredging the metal pad to remove anode cover debris in the bath.

In a presentation on alumina dissolution, Welch discussed the integration of cell design, feed strategy and electrolyte chemistry on the operation of the cell and gave some insight into the requirements for efficient design. He reviewed the impact of changing dimensions through retrofit on the availability of bath for the feed action and the attendant consequences on sludge formation as well as the role of alumina quality and the effects of cell conditions on the dissolution of alumina. Kuschel examined the laboratory investigations of alumina dissolution with a view to understanding how the structure of the alumina influences its dissolution. This work will also provide criteria for the optimum design of feeders and feed strategies.

Other studies have elaborated on criteria relating to designing the packing arrangements of the anodes in the cell for optimum alumina distribution in the electrolyte. All these approaches are of benefit to the designers of retrofit technology.

For the plant seeking to upgrade its cell technology, it is possible to design out some of the magnetic imbalance. However, the costs of implementation have always been prohibitive. With computer modeling tools, the possibility now exists for the development and execution of new concepts in this area. Designing retrofit upgrades for existing cell technology, therefore, requires a cost-effective compromise ['kɔmprəmaɪz] between the requirements of operability and the perfect magnetic environment.                  

Task 1

Find in the text:

  1. модернизация переоборудования существующей технологии электролизера
  2. локализованная эрозия в катодной футеровке
  3. поддерживать межэлектродное пространство
  4. электромагнитные силы электролизера
  5. влияние условий работы электролизера
  6. плотность близкая к самой массе металла
  7. отрицательное влияние магнитных эффектов
  8. нестабильности напряжения в электролизерах
  9. модернизация эксплуатационной готовности ванны
  10. временная неэффективность выхода по току
  11. смешивать слой металла и объем электролита
  12. потери напряжения
  13. требования работоспособности
  14. сократить срок эксплуатации катода
  15. структура глинозема

Task 2

Translate into Russian:

  1. distribution of the heat and alumina throughout the electrolyte
  2. the anode changing operation
  3. to remove anode cover debris in the bath
  4. the perfect magnetic environment
  5. vortices and eddies in the metal pad
  6. a poorly designed equilibrium
  7. optimum alumina distribution in the electrolyte
  8. a cost-effective compromise
  9. cause shorting of the anodes
  10. the magnetic field's effect
  11. the requirements for efficient design
  12. result in waves and splashing
  13. the production of aluminum
  14. the metal pad velocity
  15. an uneven metal pad


Text 7

Thermal design

thermal ['θɜ:m(ə)l] тепловой ,термический

precise [prɪ'saɪs] 1) а) точный; определённый

envelope 1) оболочка; кожух; обшивка 2) зона обработки; рабочая зона isotherm ['aɪsəuθɜ:m] изотерма (линия на диаграммах состояния)

disruption [dɪs'rʌpʃ(ə)n] 1) поломка (напр. инструмента) ; разрушение 2) разрыв

block подставка; опора; подкладка; подпорка || поддерживать; подпирать; устанавливать опору

integrity [ɪn'tegrətɪ] 1) целостность; непрерывность; сохранность 2) работоспособность

fluctuation [.flʌkʧu'eɪʃ(ə)n ], [flʌktju'eɪʃ(ə)n] флуктуации; колебание; колебания; пульсация; отклонение (от заданного режима или параметра)

spalling[spɔ:l] 1) раскалывание; скалывание 2) отслаивание; растрескивание

cope [kəup] i 1) (cope with) справиться; выдержать, совладать

perturbation [,pɜ:tə'beɪʃ(ə)n] 1) возмущение; нарушение 2) помеха

correlation [,kɔrə'leɪʃ(ə)n] взаимосвязь, соотношение, корреляция; взаимозависимость, взаимоотношение, отношение

extent [ɪk'stent ], [ek'stent] 1. объём; пределы 2. размер; величина; степень

voltage excursion изменение (отклонение) напряжения

sidewall life стойкость стен (корпуса конвертера)

The development of thermal modeling capabilities has also kept pace, with the result that very precise designs of the thermal envelope are now possible. These ensure that the critical isotherms are in locations which will minimize or eliminate the effects of freeze disruption on the cathode blocks and maintain the integrity of the cathode insulation over the life of the cathode. Due to the short term fluctuations in the heat balance of the cell, if the critical isotherm occurs inside the cathode block, the freezing or melting process will cause spalling of the block material. If it occurs in the insulation, the chemical attack of the electrolyte on the insulating material will destroy its properties over time, increasing the cell's heat loss.

These modern designs require a correspondingly precise operation of the cell. This can leave little flexibility to cope with external perturbations to the heat balance. For example, work done at the New Zealand Aluminium Smelters and the University of Auckland found that there is a significant correlation between the frequency and extent of cell voltage excursions and the cathode sidewall life.

Task 1

Read  and translate the text, paying attention to the meaning of the listed words.

Task 2

Ask 5 questions to the text in English.


Text 8

Cavity design

pose [pəuz]  излагать, формулировать (вопрос, проблему), ставить, предлагать (вопрос, задачу)

challenge ['ʧælɪnʤ] 1) (брошенный) вызов || бросать вызов 2) проба сил; серьезное испытание

cost-effective [,kɔstɪ'fektɪv] доходный, прибыльный, рентабельный

constrain [kən'streɪn] 1) заставлять, принуждать; обязывать 2) сдерживать, удерживать (от чего-л.)

long-life [,lɔŋ'laɪf] долговечный, с большим сроком службы

current density плотность (электрического) тока

The geometry of the cell's operating cavity plays an important role in the heat balance characteristics of the cell as well as being one of the most important contributors to the ability to protect the upper surface of the anodes during operation. The anodes' surfaces contribute significantly to the heat loss from the cell. Thus, the use of a good, insulating cover serves two very useful functions.

Work has been done to show the impact of anode-to-cathode configurations on carbon consumption, which makes the consideration of the cavity necessary for the retrofit designer. This requires the extensive use of thermal modeling. Given the physical limitations of the original design, this poses a significant challenge to achieving a cost-effective improvement.

Retrofit technology designers working on the thermal envelope of the cell are constrained by the physical limits of the existing cell. The optimal solution requires the careful balancing of operational flexibility and the dictates of long-life designs to achieve the lowest possible anode current density while optimizing the heat balance of the cell to the minimum interelectrode spacing.

Task 1

Read  and translate the text, paying attention to the meaning of the listed words.

Task 2

Ask 7 questions to the text in English.


Text 9

Superstructure design and operations

superstructure ['su:pə,strʌkʧə] верхняя часть конструкции; элементы конструкции, установленные на массивных базовых деталях (напр. на стойке, основании и т.п.

incorporate 1. [in'ko:p(ə)rət] 1) соединяться, объединяться; смешиваться 2) а) включать в (состав чего-л.); заключать, содержать в себе

reservoir ['rezəvwa:] резервуар

fluoride [‘fluəraid] фторид, фтористое соединение, фтор

beam 1) балка; брус; штанга || поддерживать с помощью балки, поддерживать с помощью бруса, поддерживать с помощью штанги

jack 1) подъёмное устройство; домкрат || поднимать домкратом 2) зажимное приспособление; зажим

hood 1) крышка; колпак; кожух || использовать крышку или колпак; покрывать кожухом

facet ['fæsɪt] 1) грань, узкая грань; фаска; скошенная поверхность 2) фасет, аспект (рассмотрения предмета)

enhance [ɪn'hɑ:n(t)s] 1) увеличивать, усиливать, улучшать (обычно какое-л. положительное свойство)

piece count количество штук

furthermore [,fɜ:ðə'mɔ:] к тому же, кроме того; более того

entire bottom surface вся нижняя поверхность

packing density 1) плотность расположения, плотность размещения; 2) плотность монтажа; плотность (размещения) компонентов

The latest superstructure designs incorporate the puncher/feeders and alumina reservoir, fluoride addition systems, anode bus beam, jack mechanisms and anodes together with the gas collection and hooding equipment. From an operational point of view, the puncher / feeder system design has the most impact on the ability to carry out the alumina addition strategy.

Another facet of the design of the cell is the anode size and piece count. The tendency to maximize anode size while minimizing piece count in the cell for a given current density is not without its drawbacks, even though maximizing the area of anodes changed out in one operation enhances productivity. The larger the proportion of the anode area changed for a given anode life, the fewer the interventions to the cell, with a consequent reduction in the number of disturbances to the operating equilibrium. Furthermore, the operator requirements for the anode change activity are minimized.

Published work has shown that in the modern, highly tuned thermal designs, immediately after anode change, electrolyte solidification can occur under the entire bottom surface of the anode. This can result in operational instability and require operator intervention. Retrofitting larger anodes to a cell must therefore be done in conjunction with the thermal design, and usually requires extensive thermal modeling to arrive at the optimal packing density and configuration.

Task 1 Read  and translate the text, paying attention to the meaning of the listed words.

Task 2 Ask 10 questions to the text in English.


Text 10

Anode quality

consistent supply последовательное обеспечение

dusting образование пыли, пылеобразование

air burn сжигание воздуха

chunk  участок, порция, кусок

to tolerate ['tɔl(ə)reɪt] 1) допускать 2) выдерживать

to bake1) отжиг; обжиг || отжигать; обжигать 2) спекаться 3) прокаливать

rodded обработанный штыкованием, штыкованный

petroleum coke [pə'trəulɪəm kəuk] нефтяной кокс

pitch пек, каменноугольная смола; битум; смола; вар

anode butt анодный конец, анодный остаток

calcined coke ['kælsaɪnd kəuk] обожжённый кокс

breakthrough ['breɪkθru:] 1) прорыв 2) выдающееся научное или техническое достижение

One key to the operation of modern reduction cells at high efficiency is a consistent supply of high-quality anodes. Older cell designs are often more forgiving of the results of poor anode quality (e.g., dusting, airburn and carbon chunks in the bath). The new, energy-efficient cell usually will not tolerate such situations.         

Unlike alumina and bath materials, anodes do not typically arrive at a plant ready for use in the cells. Anodes have to be carefully fabricated, baked and rodded, starting from the basic components of petroleum coke, pitch and spent anode butts.

 As a result, there has been more focus and concentration on anode technology during the past decade. The specification of low-reactivity calcined coke as the anode filler is now accepted as a normal measure for enhancing anode quality. In addition, anode plant process control is being carefully monitored. Perhaps the most significant breakthrough has been the establishment of a clear link between poorly cleaned anode butts and carbon consumption. Dirty butts are the most common cause of abnormal anode consumption and dusting. Further, the importance of consistent baking above a minimum final temperature is clearly a factor in anode consumption and dusting.

Task 1

Read  and translate the text, paying attention to the meaning of the listed words.

Task 2

Ask 7 questions to the text in English.


Text 11

Control systems

cell – электролизер

alumina [ə'lu:minə] – глинозем, окись алюминия

sludge [slʌʤ] – шлам

carbon dioxide ['ka:b(ə)n dai'oksaid] – углекислый газ

anode ['ænəud] – анод

lean mode of operation -  обедненный способ функционирования

anode effect – анодный эффект

cell's heat balance – тепловой баланс электролизера

electrolyte  [i'lektrəlait] -  электролит

the rate of feeding of alumina -  темп (скорость) подачи глинозема

anode bus -  анодная шина

bath chemistry adjustment [ə'ʤʌstmənt] system -  система регулирования химических процессов ванны

a cell-by-cell basis -  система последовательного соединения электролизеров

an aluminum fluoride[‘fluəraid]  hopper -  бункер фторида алюминия

smelter -  плавильная печь

metal tapping operation -  операция выпуска наплавленного металла

to tap – пробивать летку; выпускать расплавленный металл (из печи)

(to) retrofit ['retrəufit] – модернизировать, модернизация

reduction-smelting process - процесс прямого получения жидкого металла восстановительной плавкой руды

 reduction smelting восстановительная плавка

thermal design - тепловой расчёт

With the availability of microprocessor-based control systems, preventive (upstream) process control utilizing dynamic models and expert systems has become even more effective in the prevention of operational instability. The capability of these systems has led to increasingly sophisticated control strategies.

Most current thinking places emphasis ['emfəsis] on operating the reduction cell with as low an alumina concentration as possible. The intent of this strategy is to minimize sludge formation. There are also indications that low concentrations of alumina reduce the activity of carbon dioxide in the bath, as well as the bubble surface area on the anodes, thereby reducing the potential for re-oxidation of the metal.

This lean mode of operation, which approaches the onset of the anode effect, decreases the necessity for anode effects as an indication of alumina concentration, reducing the disturbance to the cell's heat balance and saving the energy normally wasted by anode effects. However, lean operation requires quick responses to the signals for alumina addition to avoid the onset of the anode effect.

The design must also have the capability, on the odd occasion when an anode effect does occur, to automatically supply enough alumina to the electrolyte in the shortest possible time to extinguish the anode effect. This is usually accomplished by accelerating the rate of feeding of alumina while lowering and then raising the anode bus.

Designing the bath chemistry adjustment system into the superstructure permits the use of computer control of bath ratio on a cell-by-cell basis. This usually means including an aluminum fluoride hopper within the superstructure. There has been a great deal of work in this area to define the necessary control algorithms ['ælg(ə)rið(ə)m]. The ability to place these on the individual cell will result in even tighter control of the electrolyte.

In new smelters, the metal tapping operation is viewed as part of the heat balance control system. Direct weighing of metal as it is tapped, with automatic downloading to the computer system to precisely control the amount removed, is commonplace. Also, adjustments to the tap are made on the basis of the cell's thermal condition. From a retrofit point of view, these systems must become an integral part of the design in conjunction with the thermal design of the cathode.

Task 1

Match the following word combinations:

  1. part of the heat balance control system
  2. the activity of carbon dioxide
  3. microprocessor-based control systems
  4. the cell's thermal condition
  5. to extinguish the anode effect
  6. the intent of this strategy
  7. control the amount removed
  8. an alumina concentration
  9. adjustments to the tap
  10. has become even more effective
  11. the use of computer control
  12. sludge formation  
  13. weighing of metal as it is tapped
  14. requires quick responses
  15. the onset of the anode effect

  1. цель этой стратегии
  2. образование шлама
  3. регулировка выливки
  4. термическое состояние электролизера
  5. часть системы управления тепловым балансом
  6. начало анодного эффекта
  7. контроль извлеченного количества
  8. взвешивание металла после выливки
  9. управляющие системы, основанные на микропроцессорах
  10. концентрация глинозема
  11. требует быстрых ответов
  12. действие углекислого газа
  13. использование компьютерного управления
  14. стал даже более эффективным
  15. погасить анодный эффект

Text 12

The impact of retrofit technology

potlife 1) долговечность

to emphasize ['emfəsaɪz] придавать особое значение; подчёркивать, акцентировать

Over the last ten years in plants using Kaiser technology, the factors discussed in this article have been used in combination to enhance smelter energy efficiencies by 10%, current efficiencies by 5%, potlife by 35% and net carbon consumption by 10%.

An example of the long-range planning required for retrofitting is at a former Kaiser plant (now owned by Hoogovens) in Germany. Here, the cathode upgrade work started well ahead of the increase in anode size. The Kaiser-designed P69 cell, installed in 1970, now uses the Kaiser-designed Celtrol® control system and operates at a relatively high ratio by today's standards, using half-break technology. With these efficiencies, the cell is producing at current efficiencies on the order of 94.5%.

This demonstrates the importance of operational strategies in the achievement of world-class performance and illustrates the notion that older designs can perform at very high levels of efficiency if appropriate operational control technology is applied and if the operational strategy is emphasizes continuous improvement.

 

 

Conclusion

robust [rə'bʌst] 1) прочный (о конструкции) ; жёсткий 2) надёжный; устойчивый

Improved performance may be achieved from older cell designs by the application of these systems, which release the operators from the repetitive aspects of their jobs while supporting their knowledge and experience in improving the day-to-day operation of the cell. This must be coupled with changes to the physical design to make cells more robust, yet flexible, to reduce the impact of varying quality in raw materials.

There is also a need for more work investigating the individual effects of point feeders, magnetic environment modifications and bath chemistry on current efficiency, as these are major contributors to the cost of retrofitting existing cells.

Task 1

Read  and translate the texts, paying attention to the meaning of the listed words.

Task 2

Ask 8 questions to the texts in English.