Тема 5. Раздел 2. Биология. Тема: "Основы генетики и селекции" Тема урока: "Обмен веществ и энергии в клетке"
план-конспект занятия
Теоретической основой селекции является генетика, разрабатывающая проблемы наследственной изменчивости, системы скрещивания и отбора. Создателем современной генетической основы селекции является Н. И. Вавилов. Важнейшей задачей селекции является исследование закономерностей эволюции домашних животных и возделываемых растений.
В клетке протекают одновременно два процесса - это пластический обмен (анаболизм или ассимиляция) и энергетический обмен (фатаболизм или диссимиляция).
Скачать:
Вложение | Размер |
---|---|
Лекционный материал "Селекция" | 695.48 КБ |
Дополнительный материал "Обмен веществ" | 391.28 КБ |
Лекционный материал "Энергетический обмен клетки" | 201.97 КБ |
Дополнительный материал "Метаболизм" | 815.31 КБ |
Тест по теме " Обмен веществ" | 12.96 КБ |
Предварительный просмотр:
Селекция
Селекция (лат. selectio - выбирать) - наука и отрасль практической деятельности, направленная на создание новых сортов растений, пород животных и штаммов микроорганизмов, обладающих полезными для человека свойствами.
Этими полезными свойствами могут быть размер и форма плодов, урожайность, удойность у коров, устойчивость к факторам внешней среды (к засушливому климату, к морозу).
Основы селекции
В основе селекции лежит способность генотипа живых организмов к изменениям, что происходит главным образом за счет комбинативной и мутационной изменчивости. В процессе селекции происходит искусственный отбор организмов с полезными для человека свойствами и их размножение.
В результате множества последовательных скрещиваний, в конце концов, селекционерам удается достичь желаемой цели: вывести гибридов с нужными признаками.
Мутационная изменчивость существует благодаря мутациям - случайным ненаправленным изменениям генотипа. Благодаря мутациям, к примеру, возник безалкалоидный сорт люпина. И.В. Мичуриным на яблоне сорта Антоновка Могилевская были обнаружены необычайно крупные плоды, ветвь с которым послужила для появления нового сорта - Антоновки шестистограммовой. Эти плоды - результат произошедшей в естественных условиях мутации соматических клеток.
"Сколько ждать этой естественной мутации?" - спросите вы. Может один день, а может и 100, и 10000 лет - всем властвует случайность. На наш век может не выпасть удача, а мы такого допустить не можем! :)
Именно по этой причине в селекции растений часто используются искусственно вызванные мутации - авто- и аллополиплоидию.
Автополиплоидия
Автополиплоидия - кратное (4n,6n,8n) увеличение исходного набора хромосом, который характерен для особей вида.
Автополиплоидия возникает в результате обработки почек колхицином, который нарушает образование нитей веретена деления, и, соответственно, нарушает расхождение хромосом в мейозе, в результате чего набор хромосом в половых клетках (гаметах) оказывается удвоенным. Таким способом получают полиплоиды - сорта растений, обладающие повышенной урожайностью.
Существуют различные тетраплоидные сорта свеклы, мака, кукурузы и других сельскохозяйственных культур, которые отличаются большими размерами плодов.
Аллополиплоидия
Аллополиплоидия (греч. állos — другой и polýploos — многократный) - соединение в клетках организма хромосомного набора от разных видов или родов, в результате которого образуется гибридная зигота.
Благодаря аллополиплоидии получают новые сорта растений. Наиболее известным примером является гибрид ржи и пшеницы - тритикале. Некоторые межвидовые гибриды табака обладают повышенной устойчивостью к возбудителям заболеваний мучнистой росы, табачной мозаики.
В рамках биотехнологии разработаны методы, с помощью которых стало возможным создание бактерий, синтезирующих полезные для человека белки, многие из которых используются как лекарства: аминокислоты, антибиотики, инсулин.
Скрещивание особей в селекции
Каждое скрещивание как сдача новых карт: может повезет, а может и нет. Вполне возможно, что особь унаследует полезные признаки от родителей и сможет передать их своим потомкам, всегда есть и шанс того, что появятся новые полезные для человека признаки, равно как и шанс, что ничего полезного из проводимого скрещивания не выйдет.
Возможны несколько вариантов скрещивания:
- Близкородственное скрещивание (инбридинг - от англ. in — внутри + breeding — разведение)
Близкородственное скрещивание в течение нескольких поколений приводит к переходу генов в гомозиготное состояние, вследствие чего потомство ослабевает и становится более подвержено наследственным заболеваниям.
Замечу, что под инбридингом подразумевают близкородственное скрещивание животных. Для самоопыления у растений существует иной термин - инцухт.
В селекции инбридинг применяют для выведения чистых линий (гомозиготных особей - aa, AA, bb, BB), которые используются, например, для анализирующего скрещивания. Инбридинг использовался при выведении абсолютно всех пород животных, и в настоящее время активно используется в питомниках для выведения нужных пород животных (кошек, собак и т.д.)
- Неродственное скрещивание (аутбридинг - от англ. out — вне + breeding — разведение)
Аутбридинг заключается в скрещивании неродственных особей, которые могут принадлежать к одному сорту, породе, виду или роду. Аутбридинг ведет к явлению гетерозиса - получения гетерозисных форм, которые превосходят родительских особей по ряду признаков.
Гетерозис - явление увеличения жизнеспособности особей у гибридов, которые получены при скрещивании двух чистых линий. Такой эффект связан с переходом генов в гетерозиготное состояние, что повышает выживаемость организмов, плодовитость, и множество других полезных свойств.
- Отдаленная гибридизация
Применение отдаленной гибридизации заключается в скрещивании особей, принадлежащих к разным родам и видам. Такие особи обладают крайне полезными для человека свойствами, но часто бесплодны (стерильны).
Известным примером отдаленной гибридизации является мул - гибрид осла (самца) и лошади (самки). Отличаются большой выносливостью и работоспособностью, живут до 40 лет, обладают хорошим иммунитетом к заболеваниям, не требовательны в корме и уходе.
Обратный пример: гибрид ослицы (самки) и жеребца (самца) - лошак. Встречаются гораздо реже по сравнению с мулом, так как обладают меньшей выносливостью и работоспособностью. В большинстве случаев бесплодны.
Отбор в селекции
Отбор в селекции осуществляет человек с единственной целью: размножить особей с нужными и полезными признаками, свойствами. Очевидно, что такой отбор называется искусственным, в противовес естественному отбору, главный критерий которого - приспособленность.
Отбор может осуществляться двумя способами:
- Массовый отбор
Отбор организмов исключительно на основе внешних данных (фенотипа). Основным критерием для человека служит проявление признака: размер плодов, цвет лепестков, цвет листьев и т.д. Этот вид отбора характеризуется массовостью и быстротой.
В результате массового отбора формируется группа особей, которые обладают нужными и полезными для человека признаками. В дальнейшем они подвергаются размножению.
- Индивидуальный отбор
Выборочный отбор и сохранение особей с ценными для человека признаками. В ходе индивидуального отбора оценивается не только фенотип, но и генотип, вследствие чего данный вид отбора занимает большее время, но оказывается более эффективен.
Индивидуальный отбор требует оценки потомства от выбранной особи в ряду поколений. Иногда подобный отбор применяют у самоопыляемых растений: пшеницы, ячменя - с целью получения чистых линий. Как было сказано ранее, чистые линии характеризуются гомозиготностью и являются исходным материалом для селекции.
Предварительный просмотр:
Обмен веществ и превращения энергии. Ферменты»
Клетку можно уподобить миниатюрной химической фабрике, на которой происходят сотни и тысячи химических реакций. Обмен веществ — совокупность химических превращений, направленных на сохранение и самовоспроизведение биологических систем. Он включает в себя:
- поступление веществ в организм в процессе питания и дыхания,
- внутриклеточный обмен веществ, или метаболизм,
- выделение конечных продуктов обмена.
Метаболизм складывается из двух одновременно протекающих в клетке процессов: пластического и энергетического обменов.
Энергетический обмен и пластический обмен
Пластический обмен (анаболизм, ассимиляция) представляет собой совокупность реакций синтеза, которые идут с затратой энергии АТФ. В процессе пластического обмена синтезируются органические вещества, необходимые клетке. Примерами реакций пластического обмена являются фотосинтез, биосинтез белка и репликация (самоудвоение) ДНК.
Энергетический обмен (катаболизм, диссимиляция) — это совокупность реакций расщепления сложных веществ до более простых. В результате энергетического обмена выделяется энергия, запасаемая в виде АТФ. Наиболее важными процессами энергетического обмена являются дыхание и брожение.
Пластический и энергетический обмены неразрывно связаны, поскольку в процессе пластического обмена синтезируются органические вещества и для этого необходима энергия АТФ, а в процессе энергетического обмена органические вещества расщепляются и высвобождается энергия, которая затем будет израсходована на процессы синтеза.
Энергию организмы получают в процессе питания, а высвобождают ее и переводят в доступную форму в основном в процессе дыхания.
Схема общего обмена веществ
Ферменты
Протекание химических реакций в живых организмах обеспечивается благодаря биологическим катализаторам белковой природы — ферментам, или энзимам. Как и другие катализаторы, ферменты ускоряют протекание химических реакций в клетке в десятки и сотни тысяч раз, а иногда и вообще делают их возможными, но не изменяют при этом ни природы, ни свойств конечного продукта (продуктов) реакции и не изменяются сами. Ферменты могут быть как простыми, так и сложными белками, в состав которых, кроме белковой части, входит и небелковая — кофактор (кофермент). Примерами ферментов являются амилаза слюны, расщепляющая полисахариды при длительном пережевывании, и пепсин, обеспечивающий переваривание белков в желудке.
Ферменты отличаются от катализаторов небелковой природы высокой специфичностью действия, а также возможностью регуляции действия за счет изменения условий протекания реакции либо взаимодействия с ними различных веществ. К тому же и условия, в которых протекает ферментный катализ, существенно отличаются от тех, при которых идет неферментный: оптимальной для функционирования ферментов в организме человека является температура 37° С, а давление должно быть близким к атмосферному.
Механизм действия ферментов заключается в снижении энергии активации веществ (субстратов), вступающих в реакцию, за счет образования промежуточных фермент-субстратных комплексов.
Предварительный просмотр:
Энергетический обмен
Обмен веществ
Обмен веществ (метаболизм) складывается из процессов расщепления и синтеза - диссимиляции и ассимиляции, постоянно протекающих в организме. Чтобы жизнь продолжалась, количество поступающей энергии должно превышать (или как минимум равняться) количеству расходуемой энергии, поэтому диссимиляция и ассимиляция поддерживают определенный баланс друг с другом.
Энергетический обмен
Энергетический обмен (диссимиляция - от лат. dissimilis ‒ несходный) - обратная ассимиляции сторона обмена веществ, совокупность реакций, которые приводят к высвобождению энергии химических связей. Это реакции расщепления жиров, белков, углеводов, нуклеиновых кислот до простых веществ.
Возможно три этапа диссимиляции: подготовительный, анаэробный и аэробный. Среда обитания определяет количество этапов диссимиляции. Их может быть три, если организм обитает в кислородной среде, и два, если речь идет об организме, обитающем в бескислородной среде (к примеру, в кишечнике).
Обсудим этапы энергетического обмена более подробно:
- Подготовительный этап
Подготовительный этап осуществляется ферментами в ЖКТ. В результате действия ферментов сложные вещества превращаются в более простые: полимеры распадаются на мономеры. Это сопровождается разрывом химических связей и выделением энергии, большая часть которой рассеивается в виде тепла.
Под действием ферментов белки расщепляются на аминокислоты, жиры - на глицерин и жирные кислоты, сложные углеводы - до простых сахаров.
- Бескислородный этап (анаэробный) - гликолиз
Этот этап является последним для организмов-анаэробов, обитающих в условиях, где кислород отсутствует. На этапе гликолиза происходит расщепление молекулы глюкозы: образуется 2 молекулы АТФ и 2 молекулы пировиноградной кислоты (ПВК). Происходит данный этап в цитоплазме клеток.
- Кислородный этап (аэробный)
Этот этап доступен только для аэробов - организмов, живущих в кислородной среде. Из каждой молекулы ПВК, образовавшейся на этапе гликолиза, синтезируется 18 молекул АТФ - в сумме с двух ПВК выход составляет 36 молекул АТФ.
Таким образом, суммарно с одной молекулы глюкозы можно получить 38 АТФ (гликолиз + кислородный этап).
Кислородный этап протекает на кристах митохондрий (складках, выпячиваниях внутренней мембраны), где наибольшая концентрация окислительных ферментов. Главную роль в этом процессе играет так называемый цикл Кребса, который подробно изучает биохимия.
АТФ - аденозинтрифосфорная кислота
Трудно переоценить роль в клетке АТФ - универсального источника энергии. Молекула АТФ состоит из азотистого основания - аденина, углевода - рибозы и трех остатков фосфорной кислоты.
Между остатками фосфорной кислоты находятся макроэргические связи - ковалентные связи, которые гидролизуются с выделением большого количества энергии. Их принято обозначать типографическим знаком тильда "∽".
АТФ гидролизуется до АДФ (аденозиндифосфорная кислота), а затем и до АМФ (аденозинмонофосфорная кислота). Гидролиз АТФ сопровождается выделением энергии (E) на каждом этапе и может быть представлен такой схемой:
- АТФ + H2O = АДФ + H3PO4 + E
- АДФ + H2O = АМФ + H3PO4 + E
- АМФ + H2O = аденин + рибоза + H3PO4 + E
Пластический обмен
АТФ является универсальным источником энергии в клетке: энергия макроэргических связей АТФ используется для реакций пластического обмена (ассимиляции), протекающих с затратой энергии: синтеза белка на рибосоме (трансляции), удвоению ДНК (репликации) и т.д.
В результате пластического обмена в нашем организме происходит синтез белков, жиров и углеводов.
Предварительный просмотр:
Обмен веществ и энергии в клетке Одним из основных свойств живых систем считается их открытость. При этом постоянно происходит взаимообмен веществ, энергии и информации с внешней средой. Сегодня на уроке познакомимся с особенностями обмена веществ организмов. Подробно остановимся на энергетическом обмене. Рассмотрим, как осуществляется питание клетки, фотосинтез и хемосинтез.
Метаболизм
Всякая живая клеточная структура постоянно осуществляет различные реакции, которые обеспечивают все основные процессы, необходимые для нормального существования.
Так обеспечивается постоянство условий внутренней среды биологической системы или гомеостаз. При нарушении этих условий происходит сбой в работе всей системы, что способно привести к гибели не только отдельной клетки, но и всего организма. Соответственно, все процессы ориентированы на поддержание именно гомеостаза. С целью реализации трудоемких биохимических реакций требуются различные соединения, а также энергия, получаемые организмом при метаболизме.
Получается, что ассимиляция и диссимиляция – это взаимозависимые процессы, протекающие синхронно. Любой организм, вследствие питания, получает извне различные вещества и микроэлементы, используемые в процессе ассимиляции. Ассимиляция – это процесс, состоящий в формировании соединений, а также составных частей клетки. Данные реакции иначе именуются анаболизм или пластический обмен. Примером ассимиляции может быть образование белковых молекул. Любые реакции синтеза проходят с расходом энергии. Источником ее выступают ранее образованные соединения, находящиеся в клетке. Они подвергаются распаду вследствие протекания совокупности процессов диссимиляции. Частично освобождающаяся энергия применяется при синтезе различных соединений, часть рассеивается с теплом или запасается. Соответственно, диссимиляция – это процесс,заключающийся в разложении веществ с освобождением энергии. Процесс диссимиляции в организме именуется еще катаболизм или энергетический обмен. Ассимиляция и диссимиляция не могут существовать по отдельности. Нарушение баланса этих процессов приведет к развитию заболеваний или гибели организма. К примеру, это может выразиться в истощении или ожирении. Метаболизм в клеточных структурах протекает при средней температуре, нормальном давлении и нейтральной среде. Из курса химии нам известно, что только повышение данных показателей приведет к ускорению реакции. При таких же условиях реакции должны протекать очень медленно. Однако, в биологических системах есть помощники метаболизма – ферменты. Роль ферментов в метаболизме огромна. Данные структуры ускоряют реакцию без изменения ее общего результата. Причем абсолютно все процессы в организме протекают при участии ферментов. К примеру, под их действием происходит разложение пищи на составные компоненты. Исходя из значения ферментов в метаболизме можно сказать, что нарушение их образования и активности приведет к различным заболеваниям. Энергетический обмен Диссимиляция или энергетический обмен проходит в несколько этапов. Познакомимся с ними на схеме.
Подготовительный этап энергетического обмена проходит в цитоплазме растительных клеток, простейших, в пищеварительной системе животных, а кроме того и человека. При этом питательные соединения под воздействием пищеварительных ферментов разлагаются до мономеров. Вследствие этого образуется незначимый объем энергии, рассеивающейся как тепло. На представленном этапе энергетического обмена синтеза АТФ не происходит. Вторым этапом диссимиляции веществ считается бескислородный или анаэробный. Проходит данная стадия в цитоплазме клеток, заключается в разложении мономеров, образовавшихся на предварительной стадии. Примером подобного процесса считается гликолиз – многоступенчатое расщепление глюкозы. Мономеры углеводов подвергаются распаду в отсутствии кислорода с освобождением энергии, определенное количество которой расходуется для формирования АТФ.
При протекании ряда последовательных этапов гликолиза совершается разложение молекулы глюкозы на две молекулы пировиноградной кислоты. Чаще всего, пировиноградная кислота затем преобразуется в молочную кислоту. Вследствие этих реакций в ходе гликолиза из АДФ, а также фосфорной кислоты синтезируются 2 молекулы АТФ. Следует учесть, что по такому принципу гликолиз протекает в клетках животных и человека. В растительных клетках, в отдельных дрожжевых грибах, у бактерий бескислородный этап осуществляется как спиртовое брожение. В реакции спиртового брожения могут вступать всевозможные соединения. Например, углеводы, органические кислоты, спирты, аминокислоты и многие другие. Широкое распространение получили реакции расщепления глюкозы при молочнокислом, а также спиртовом брожении. У молочнокислых бактерий спиртовое брожение сопровождается ферментативным расщеплением глюкозы и продуктом является молочная кислота. Суммарные уравнения молочнокислого и спиртового брожения рассмотрим на рисунке.
Вследствие бескислородной стадии энергетического обмена вещества распадаются не до конечных продуктов, а до соединений с запасом энергии. Поэтому они переходят в следующий этап – кислородный. 3. Третья стадия энергетического обмена получила название аэробного или кислородного.В течение данных реакций осуществляется последующее разложение органических соединений до конечных продуктов. Характерен он только аэробным организмам, использующим для метаболизма кислород.
Происходит кислородный распад в митохондриях, поэтому именуется еще клеточным дыханием. Протекает оно в несколько поочередных стадий. Основным признаком клеточного дыхания является участие кислорода в распаде соединений. В процессе клеточного дыхания осуществляется дальнейшее окисление пировиноградной кислоты с формированием двуокиси углерода и воды. Данный этап считается заключительным, поэтому при клеточном дыхании выделяется внушительное число энергии в виде 36 молекул АТФ. Вследствие процесса энергетического обмена веществ при окислении одной молекулы глюкозы формируется 38 молекул АТФ. Эта энергия используется на другие химические реакции. К примеру, у человека каждая молекула АТФ расщепляется и вновь создается 2400 раз в сутки, то есть средняя продолжительность жизни АТФ менее минуты. Питание клетки Для протекания метаболизма в клетке необходимы различные питательные вещества, которые организм получает в результате питания.
Все живые организмы различаются по тому, какую пищу они используют. Некоторые организмы способны сами производить вещества, другие же в процессе питания клетки потребляют уже готовые. Различают несколько разновидностей организмов по способу питания клетки: 1.
Автотрофы сами производят органические вещества. Для осуществления процессов синтеза они используют простые неорганические соединения – углекислый газ и воду. Источником энергии для протекания ассимиляции в клетке у автотрофов является солнечный свет или энергия химических взаимодействий. Организмы, использующие солнечный свет для формирования органических соединений получили название фототрофы. Этим существам характерен фотосинтез, протекающий в хлоропластах. Соответственно, фототрофами являются все зеленые растения.
Помимо этого, примером фототрофов считаются цианобактерии, зеленые и пурпурные бактерии. Организмы, которые для производства органических соединений используют энергию химических взаимодействий, называются хемотрофами.
Хемотрофами являются некоторые бактерии, к примеру, железобактерии, серобактерии, нитрифицирующие бактерии. Гетеротрофы используют в пищу готовые органические вещества. Вследствие такого питания гетеротрофы получают энергию, требуемую для жизненных процессов, а также служат источником строительного материала для клеточных структур. Гетеротрофами являются все животные, грибы и большинство бактерий.
Вдобавок есть организмы, применяющие для питания клетки автотрофный и гетеротрофный способ. К этим организмам относится эвглена зеленая. У нее есть хлоропласты и она может сама производить вещества для питания клетки как автотрофы. Однако в темноте, ее питание осуществляется гетеротрофным способом как у животной клетки. Фотосинтез Одним из примеров ассимиляции является процесс фотосинтеза у растений.
Фотосинтез происходит в фотосинтезирующем пигменте хлорофилле хлоропластов листа. Данный пигмент считается чрезмерно активным соединением и реализует поглощение света, начальный запас энергии, также последующая ее трансформация в химическую энергию. Принято выделять световую и темновую фазы фотосинтеза. Остановимся детальнее на них.
Световая фаза совершается в мембранах хлоропластов. Наступает световая фаза фотосинтеза с поглощения кванта света молекулой хлорофилла. Один из электронов хлорофилла переводится на высочайший энергетический уровень и вступает в возбужденном состоянии. Электроны с большим избытком энергии активизируют разложение воды. Данная процедура, протекающая на начальной стадии фотосинтеза, приобрела наименование фотолиз воды. В итоге распада совершается отдача гидроксид-ионом (OH-) своего электрона, а также превращение его в радикал (OH). Радикалы объединяются и формируют воду, свободный кислород. Далее в процессе светового фотосинтеза электрон от гидроксид-иона снова попадает в молекулу хлорофилла, замещая удалившийся электрон. Вследствие этого освобождается энергия, идущая для формирования АТФ. В процессе световой фазы фотосинтеза совершается превращение световой энергии в химическую энергию макроэргических связей молекулы АТФ. В данной фазе фотосинтеза осуществляется выброс кислорода, являющегося второстепенным продуктом. Он может употребляться дальше растительными клетками при дыхании или выделяться в биосферу. 2. В момент темновой фазы фотосинтеза проистекают трудоемкие ферментативные взаимодействия. Основой считается трансформация молекул углекислого газа до органических соединений. Протекает данная стадия в строме хлоропластов в присутствии продуктов световой реакции. Основным признаком темновой фазы фотосинтеза считается отсутствие солнечного света.
Начинается данная стадия с проникновения углекислого газа в листья через устьица. Затем он соединяется со своеобразным веществом – акцептором, которым выступает при фотосинтезе пятиуглеродный сахар – рибулозодифосфат. Вследствие этого формируется нестойкое соединение, разлагающиеся на 2 молекулы фосфороглицериновой кислоты. Эти молекулы подвергаются воздействию продуктов светового фотосинтеза, в частности АТФ. Впоследствии, посредством некоторых переходных стадий, создаются углеводы, а также прочие органические соединения. Данный процесс трансформации углекислого газа в углеводы в темновой фазе фотосинтеза приобрел наименование цикла Кальвина.
В темновом фотосинтезе энергия макроэргических связей АТФ трансформируется в химическую энергию органических соединений. Данные вещества служат пищей для гетеротрофов. Соответственно, первостепенными веществами темнового и светового фотосинтеза считаются кислород, а также углеводы. Благодаря данному процессу возможно существование всех живых существ на Земле. Ведь он является одним источником свободного кислорода. Хемосинтез Помимо фотосинтеза имеется еще один процесс автотрофной ассимиляции – хемосинтез, типичный отдельным видам микроорганизмов. Основой энергии для хемосинтеза здесь служит не свет, а окисление отдельных неорганических соединений. Открытие хемосинтеза у таких организмов как бактерии принадлежит русскому ученому С.Н. Виноградскому.
Важнейшей группой данного типа питания считаются нитрифицирующие бактерии. Они могут окислять возникающий при гниении остатков аммиак до нитрита, а также до нитрата. Вследствие этого совершается освобождение энергии, нужной нитрифицирующим бактериям для жизненных функций.
Хемотрофные нитрифицирующие бактерии массово встречаются в природной среде. Они находятся в почве, в различных водоемах. Исполняемые ими процессы считаются частью круговорота азота. Серобактерии – это еще одни существа, способом питания которых является хемосинтез. Вследствие этого они окисляют сероводород и накапливают в своих клетках серу. К серобактериям относятся многие автотрофные пурпурные, а также зеленые бактерии.
Серобактерии являются разрушителями горных пород, в связи с формированием серной кислоты в ходе питания.
Выделяемая ими едкая жидкость активизирует порчу различных сооружений. Многочисленные типы серобактерий в ходе питания образуют всевозможные производные серы. Это способствует очищению промышленных сточных вод. В процессе питания железобактерии переводят железо (II) в железо (III). Освободившаяся энергия употребляется с целью восстановления углекислого газа до органических соединений.
Хемосинтетики – единственные организмы, жизнь которых не связана с освещением. Соответственно они способны существовать в различных местах, осваивая глубины океана или недра земли.
Предварительный просмотр:
1. Где происходит расщепление веществ на втором этапе энергетического обмена?
а) в органах пищеварения
б) в митохондриях
в) внутри клетки
2. К каком этапе энергетического обмена глюкоза расщепляется на 2 молекулы молочной кислоты с выделением энергии?
а) Подготовительном б) Бескислородном в) Кислородном
3. На каком этапе энергетического обмена образуется 2 молекулы АТФ?
а) Подготовительном б) Бескислородном в) Кислородном
4. Гликолиз это этап:
а) Подготовительный б) Бескислородный в) Кислородный
5.. Возбуждение электронов хлорофилла солнечным светом происходит:
а) световую фазу б) темновую фазу в) темновую и световую фазы
6. Интенсивность фотосинтеза можно регулировать с помощью:
а) увеличения концентрации углекислого газа
б) Изменения интенсивности света
в) оба ответа верны
7. Фотосинтез протекает :
а) на свету б) в темноте в) на свету и в темноте
8.Фотолиз молекул воды протекает в:
а) световую фазу б) темновую фазу в) темновую и световую фазы
9. Образование углеводов протекает в :
а) световую фазу б) темновую фазу в) темновую и световую фазы
10. Транскрипция происходит:
а) в ядре б) в цитоплазме в) в рибосоме
11. Трансляция происходит :
а) в ядре б) в цитоплазме в) в рибосоме
12. Информационная РНК образуется в:
а) в ядре б) в цитоплазме в) в рибосоме
13. Транспортная РНК находится:
а) в ядре б) в цитоплазме в) в рибосоме
14. Совокупность всех процессов биосинтеза, протекающих в живых организмах, называют:
а) диссимиляцией
б) ассимиляцией
в) метаболизмом
По теме: методические разработки, презентации и конспекты
Презентация для учебного материала "Обмен веществ и превращение энергии в клетке"
Презентация по теме "Обмен веществ и превращение энергии в клетке" составлена для соответствующей учебной темы по биологии для учащихся НПО. Может использоваться как для учащихся технического профиля,...
Обмен веществ и превращение энергии в клетке
Обмен веществ – это основа жизнедеятельности клетки. Знания процессов обмена веществ в клетке позволяют понять, как происходит круговорот веществ в природе, каким образом накапливается растительная би...
Обмен веществ и энергии в клетке — метаболизм. Реализация генетической информации
Сегодня мы проводим заключительное занятие по теме : "Обмен веществ и энергии в клетке — метаболизм. Реализация генетической информации" Какую цель семинарского занятия вы могли бы сформулировать? Как...
Контрольно-измерительный материал Раздел «Общая биология» Тема «Основы цитологии. Химическая организация клетки»
Повышению эффективности контроля знаний способствует использование различных видов заданий-измерителей: с выбором одного правильного ответа из нескольких, со свободным ответом, практическ...
Тема 6. Раздел 3. Биология. Тема: "Эволюционное учение" Тема урока: "Эволюционная теория"
ссылка на видео " Гений Ч. Дарвин". - https://youtu.be/Btuyp5GTj7Aссылка на видео " Предки человечества" - https://youtu.be/94wTY6fw7rQссыл...
Лекция-презентация по теме "Пластический обмен гетеротрофов. Трансляция" (раздел "Обмен веществ и превращение энергии в клетке")
Лекция-презентация по учебной дисциплине "Биология" тема "Обмен веществ и превращение энергии в клетке"...
Презентация по теме "Обмен веществ и энергии в клетке"
Даны понятия терминов: метаболизм; анаболизм; катаболизм; АТФ....