Замечательные свойства «девяти»
Интересные свойства числа 9 часто применяются в арифметике как для теоретических изысканий и практических действий, так и для составления различных занимательных задач или так называемых «головоломок».
Распространено также практическое применение девятки для проверки умножения и деления. Основано оно на том свойстве всякого числа, что остаток, получаемый от деления числа на девять, всегда равен остатку от деления на 9 суммы цифр этого числа. Укажем здесь еще несколько интересных применений этого числа.
Прежде всего нетрудно убедиться, что если мы напишем произвольное двузначное число, а затем напишем цифры этого же числа в обратном порядке и возьмем разность полученных чисел, то эта разность всегда разделится на 9.
Например,
72 − 27 = 45;
92 − 29 = 63;
63 − 36 = 27
и т. д.
Вообще ясно, что
(10a + b) − (10b + a) = 9(a − b),
т. е. получается число, делящееся на 9. (Кроме того разность эта равна произведению 9 на разность цифр данного двузначного числа.)
Знание этой особенности может принести практическую пользу, например, многим бухгалтерам. В двойной бухгалтерии случаются иногда ошибки, происходящие от перестановки цифр в числах. Так, например, бухгалтер может вписать в сторону, скажем, «дебета»: 4 р. 38 коп., а в «кредите» по ошибке поставить 4 р. 83 к., т. е. число, состоящее из тех же цифр, но две из них переставлены. Если других ошибок нет, то при подведении баланса между дебетом и кредитом всегда будет выходить такая разница, которая делится на 9. Обратив на это внимание, бухгалтер тотчас должен справиться, не перепутаны ли где цифры.
Источник — «Пять минут на размышление». Москва 1950. Книга составлена по материалам
Л. Успенского, А. Студенцова, Я. Перельмана, Игнатьева и др.